Dalton Transactions
Paper
in light metal element based systems – A review of recent
progress, J. Alloys Compd., 2016, 658, 280–300.
5 Y. Li, P. Li and X. H. Qu, Investigation on LiBH -CaH com-
4 2
4
by the combination of the catalytic effect of LiBH and
microwave irradiation, Catal. Today, 2018, 318,
91–96.
2
posite and its potential for thermal energy storage, Sci. 39 P. Javadian, S. P. GharibDoust, H. W. Li, D. A. Sheppard,
Rep., 2017, 7, 41754.
C. E. Buckley and T. R. Jensen, Reversibility of LiBH facili-
4
2
6 H. Q. Kou, G. Sang, Y. L. Zhou, X. Y. Wang, Z. Y. Huang,
W. H. Luo, L. M. Chen, X. Z. Xiao, G. Y. Yang and C. W. Hu,
tated by the LiBH
2017, 121(34), 18439–18449.
4 4 2
-Ca(BH ) Eutectic, J. Phys. Chem. C,
Enhanced hydrogen storage properties of LiBH modified 40 Y. W. Zhang, X. Z. Xiao, B. S. Luo, X. Huang, M. J. Liu and
4
by NbF
5
, Int. J. Hydrogen Energy, 2014, 39(22), 11675–11682.
4 4
L. X. Chen, Synergistic effect of LiBH and LiAlH ddditives
2
7 Y. H. Guo, X. B. Yu, L. Gao, G. L. Xia, Z. P. Guo and
H. K. Liu, Significantly improved dehydrogenation of
on improved hydrogen storage properties of unexpected
high capacity magnesium hydride, J. Phys. Chem. C, 2018,
122(5), 2528–2538.
4 3
LiBH destabilized by TiF , Energy Environ. Sci., 2010, 3(4),
4
65–470.
41 S. J. Qiu, H. L. Chu, Y. J. Zou, C. L. Xiang, F. Xu and
L. X. Sun, Light metal borohydrides/amides combined
hydrogen storage systems: composition, structure and pro-
perties, J. Mater. Chem. A, 2017, 5(48), 25112–25130.
2
8 B. J. Zhang, B. H. Liu and Z. P. Li, Destabilization of LiBH4
by (Ce, La)(Cl, F)(3) for hydrogen storage, J. Alloys Compd.,
2
011, 509(3), 751–757.
2
9 S. X. Zhao, C. Y. Wang, D. M. Liu, Q. J. Tan, Y. T. Li and 42 Y. Zhang, Z. Y. Lan, N. Jian, Z. H. Ren, J. J. Hu, M. X. Gao,
T. Z. Si, Destabilization of LiBH
hydrogen storage, Int. J. Hydrogen Energy, 2018, 43(10),
098–5103.
0 X. B. Yu, D. M. Grant and G. S. Walker, Dehydrogenation of
LiBH destabilized with various oxides, J. Phys. Chem. C, 43 P. Plerdsranoy, P. Javadian, N. D. Jensen, U. G. Nielsen,
009, 113(41), 17945–17949. T. R. Jensen and R. Utke, Compaction of LiBH -LiAlH
4
by SrF
2
for reversible
H. G. Pan, Y. H. Lu and Y. F. Liu, Mechanistic insights into
the remarkable catalytic activity of nanosized Co@ C com-
posites for hydrogen desorption from the LiBH -2LiNH
5
4
2
3
3
system, Catal. Sci. Technol., 2017, 7(9), 1838–1847.
4
2
4
4
1 W. T. Cai, H. Wang, L. F. Jiao, Y. J. Wang and M. Zhu,
Remarkable irreversible and reversible dehydrogenation of
LiBH4 by doping with nanosized cobalt metalloid com-
pounds, Int. J. Hydrogen Energy, 2013, 38(8), 3304–3312.
nanoconfined
in
activated
carbon
nanofibers:
Dehydrogenation kinetics, reversibility, and mechanical
stability during cycling, Int. J. Hydrogen Energy, 2017, 42(2),
1036–1047.
3
2 J. S. Wang, Z. B. Wang, Y. Li, D. D. Ke, X. Z. Lin, S. M. Han 44 P. Javadian, D. A. Sheppard, C. E. Buckley and T. R. Jensen,
and M. Z. Ma, Effect of nano-sized Ce2S3 on reversible Hydrogen desorption properties of bulk and nanoconfined
LiBH -NaAlH , Crystals, 2016, 6(6), 70.
hydrogen storage properties of LiBH
4
, Int. J. Hydrogen
4
4
Energy, 2016, 41(30), 13156–13162.
45 W. Zhao, L. J. Jiang, Y. F. Wu, J. H. Ye, B. L. Yuan, Z. N. Li,
X. P. Liu and S. M. Wang, Improved dehydrogenation cycle
3
3 Y. Zhao, Y. C. Liu, H. Q. Liu, H. Y. Kang, K. Z. Cao,
Q. H. Wang, C. L. Zhang, Y. J. Wang, H. T. Yuan and
L. F. Jiao, Improved dehydrogenation performance of
LiBH4 by 3D hierarchical flower-like MoS2 spheres addi-
tives, J. Power Sources, 2015, 300, 358–364.
4 Y. Bai, Z. W. Pei, F. Wu and C. Wu, Role of metal electro-
negativity in the dehydrogenation thermodynamics and
2
kinetics of composite metal borohydride-LiNH hydrogen
2 2 4
performance of the 1.1MgH -2LiNH -0.1LiBH system by
addition of LaNi4.5Mn0.5 alloy, J. Rare Earths, 2015, 33(7),
783–790.
46 Y. Zhang, Y. F. Liu, T. Liu, M. X. Gao and H. G. Pan,
Remarkable decrease in dehydrogenation temperature of
Li-B-N-H hydrogen storage system with CoO additive,
Int. J. Hydrogen Energy, 2013, 38(30), 13318–13327.
3
storage materials, ACS Appl. Mater. Interfaces, 2018, 10(11), 47 H. L. Chu, S. J. Qiu, L. X. Sun and G. T. Wu, Improved
9
514–9521.
hydrogen desorption properties of Li-Ca-B-N-H system cata-
lyzed by cobalt containing species, J. Renewable Sustainable
Energy, 2014, 6(1), 013105.
3
5 H. Wang, H. J. Cao, C. Pistidda, S. Garroni, G. T. Wu,
T. Klassen, M. Dorheim and P. Chen, Effects of
Stoichiometry on the H-2-Storage Properties of Mg(NH ) - 48 P. Sridechprasat, Y. Suttisawat, P. Rangsunvigit,
2
2
LiH-LiBH
2(14), 1758–1764.
6 Y. Z. Liu, D. Reed, C. Paterakis, L. C. Vasquez, M. Baricco
and D. Book, Study of the decomposition of a 0.62LiBH
4
Tri-Component Systems, Chem. – Asian J., 2017,
B. Kitiyanan and S. Kulprathipanja, Catalyzed LiBH
MgH mixture for hydrogen storage, Int. J. Hydrogen Energy,
2011, 36(1), 1200–1205.
49 J. Y. Zhu, H. Wang, W. T. Cai, J. W. Liu, L. Z. Ouyang and
M. Zhu, The milled LiBH /h-BN composites exhibiting
4
and
1
2
3
3
3
4
-
0
.38NaBH
4
mixture, Int. J. Hydrogen Energy, 2017, 42(35),
4
2
2480–22488.
unexpected hydrogen storage kinetics and reversibility,
Int. J. Hydrogen Energy, 2017, 42(24), 15790–15798.
7 E. Roedern, B. R. S. Hansen, M. B. Ley and T. R. Jensen,
Effect of eutectic melting, reactive hydride composites, and 50 J. Shao, X. Z. Xiao, L. X. Chen, X. L. Fan, L. Y. Han, S. Q. Li,
nanoconfinement on decomposition and reversibility of H. W. Ge and Q. D. Wang, Enhanced hydriding-dehydrid-
LiBH -KBH , J. Phys. Chem. C, 2015, 119(46), 25818–25825. ing performance of a 2LiH-MgB composite by the catalytic
4
4
2
8 H. Y. Leng, X. L. Zhou, Y. Shi, J. Wei, Q. Li and K. C. Chou,
Improved hydrogen desorption properties of Li-N-H system
effects of Ni-B nanoparticles, J. Mater. Chem. A, 2013, 1(35),
10184–10192.
This journal is © The Royal Society of Chemistry 2019
Dalton Trans.