Inorganic Chemistry
Article
that the sequence of performing experiments both of syntheses and
measurements was step by step; it took 2 years from x = 1 finally to x
Oba, F. Discovery of earth-abundant nitride semiconductors by
computational screening and high-pressure synthesis. Nat. Commun.
2016, 7, 11962.
=
0. If we obtained all the samples at the same time, we could employ
the shortest wavelength.
(6) Schultz-Coulon, V.; Schnick, W. CaMg N − ein gemischtes
2
2
Electronic transport properties were measured only for the
Erdalkalimetallnitrid mit anti-La O -Struktur. Z. Naturforsch., B: J.
2 3
(
Ca1−yNa )(Mg Zn ) N (x = 0.67 and y = 0.02) sample because
Chem. Sci. 1995, 50b, 619−622.
y
1−x
x
2
2
the electrical resistivity of the other undoped samples (i.e., x = 0−1
and y = 0) was too high to allow measurement of their transport
properties. We initially confirmed the electrical conduction with a
conventional electric tester in the glovebox because the Na-doped
sample was air sensitive. The temperature dependence of the electrical
resistivity and thermoelectric power (ΔV) as a function of difference
in temperature (ΔT) at room temperature (i.e., the Seebeck effect)
were measured with a physical property measurement system. For
these electrical measurements, we transferred the Na-doped sample
from the glovebox to the measuring system within ∼1 min together
with surface protection using commercially available Apiezon grease
to disturb the degradation.
(7) Shannon, R. D. Revised Effective Ionic Radii and Systematic
Studies of Interatomic Distances in Halides and Chalcogenides. Acta
Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976,
A32, 751−767.
(8) Heyns, A. M.; Prinsloo, L. C. The Vibrational Spectra and
Decomposition of α-Calcium Nitride (α-Ca N ) and Magnesium
3
2
Nitride (Mg N ). J. Solid State Chem. 1998, 137, 33−41.
3
2
(9) Wu, P.; Tiedje, T. Molecular beam epitaxy growth and optical
properties of Mg N films. Appl. Phys. Lett. 2018, 113, No. 082101.
3
2
(10) Uenaka, Y.; Uchino, T. Excitonic and Defect-Related
Photoluminescence in Mg N . J. Phys. Chem. C 2014, 118, 11895−
3
2
11901.
(
11) Nakashima, S.; Nakamura, A. Radiative recombination of
donor-acceptor pairs in ZnTe. Solid State Commun. 1981, 38, 1289−
292.
12) Berzina, B.; Korsaks, V.; Trinkler, L.; Sarakovskis, A.; Grube, J.;
ASSOCIATED CONTENT
Supporting Information
■
1
(
*
S
Bellucci, S. Defect-induced blue luminescence of hexagonal boron
nitride. Diamond Relat. Mater. 2016, 68, 131−137.
(
13) Reshchikov, M. A.; Ghimire, P.; Demchenko, D. O. Magnesium
acceptor in gallium nitride. I. Photoluminescence from Mg-doped
GaN. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 205204.
emission decay curves (PDF)
(14) Makino, T.; Tamura, K.; Chia, C. H.; Segawa, Y.; Kawasaki, M.;
Ohtomo, A.; Koinuma, H. Photoluminescence properties of ZnO
epitaxial layers grown on lattice-matched ScAlMgO4 substrates. J.
Appl. Phys. 2002, 92, 7157−7159.
AUTHOR INFORMATION
■
*
(
15) Hiramatsu, H.; Ueda, K.; Takafuji, K.; Ohta, H.; Hirano, M.;
ORCID
Kamiya, T.; Hosono, H. Intrinsic excitonic photoluminescence and
band-gap engineering of wide-gap p-type oxychalcogenide epitaxial
films of LnCuOCh (Ln = La, Pr, and Nd; Ch = S or Se)
semiconductor alloys. J. Appl. Phys. 2003, 94, 5805−5808.
(16) Smith, M.; Chen, G. D.; Lin, J. Y.; Jiang, H. X.; Salvador, A.;
Sverdlov, B. N.; Botchkarev, A.; Morkoc, H.; Goldenberg, B.
Mechanisms of band-edge emission in Mg-doped p-type GaN. Appl.
Phys. Lett. 1996, 68, 1883−1885.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(17) Tsuji, M.; Hiramatsu, H.; Hosono, H. Tunable light-emission
This work was supported by JST CREST Grant No.
JPMJCR17J2, Japan. H. Hosono was supported by the
Ministry of Education, Culture, Sports, Science, and
Technology (MEXT) through the Element Strategy Initiative
to Form Core Research Center. H. Hiramatsu was also
supported by the Japan Society for the Promotion of Science
through the range 1.8−3.2 eV and p-type conductivity at room
2
−
̈
(18) Hohn, P.; Hoffmann, S.; Hunger, J.; Leoni, S.; Nitsche, F.;
Schnelle, W.; Kniep, R. β-Ca N , a Metastable Nitride in the System
3
2
Ca−N. Chem. - Eur. J. 2009, 15, 3419−3425.
(19) Zong, F.; Meng, C.; Guo, Z.; Ji, F.; Xiao, H.; Zhang, X.; Ma, J.;
Ma, H. Synthesis and characterization of magnesium nitride powder
(
(
JSPS) through Grants-in-Aid for Scientific Research (A) and
B) (Grant Nos. 17H01318 and 18H01700) and Support for
formed by Mg direct reaction with N . J. Alloys Compd. 2010, 508,
Tokyotech Advanced Research (STAR).
2
1
(
72−176.
20) Reckeweg, O.; Lind, C.; Simon, A.; DiSalvo, F. J. Rietveld
Refinement of the Crystal Structure of α-Be N and the Experimental
REFERENCES
■
3
2
(
1) Tsao, J. Y.; Crawford, M. H.; Coltrin, M. E.; Fischer, A. J.;
Determination of Optical Band Gaps for Mg N , Ca N and
3
2
3
2
Koleske, D. D.; Subramania, G. S.; Wang, G. T.; Wierer, J. J.; Karlicek,
R. F., Jr. Toward Smart and Ultra-efficient Solid-State Lighting. Adv.
Opt. Mater. 2014, 2, 809−836.
CaMg N . Z. Naturforsch., B: J. Chem. Sci. 2003, 58b, 159−162.
2
2
(21) Kumagai, Y.; Harada, K.; Akamatsu, H.; Matsuzaki, K.; Oba, F.
Carrier-Induced Band-Gap Variation and Point Defects in Zn N
3
2
(
2) Auf der Maur, M.; Pecchia, A.; Penazzi, G.; Rodrigues, W.; Di
from First Principles. Phys. Rev. Appl. 2017, 8, No. 014015.
Carlo, A. Efficiency Drop in Green InGaN/GaN Light Emitting
Diodes: The Role of Random Alloy Fluctuations. Phys. Rev. Lett.
(22) Fukunaga, O.; Ko, Y. S.; Konoue, M.; Ohashi, N.; Tsurumi, T.
Pressure and temperature control in flat-belt type high pressure
apparatus for reproducible diamond synthesis. Diamond Relat. Mater.
2
(
016, 116, No. 027401.
3) Zakutayev, A.; Allen, A. J.; Zhang, X.; Vidal, J.; Cui, Z.; Lany, S.;
1
999, 8, 2036−2042.
23) Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche.
Z. Technol. Phys. 1931, 12, 593−601.
Yang, M.; DiSalvo, F. J.; Ginley, D. S. Experimental Synthesis and
Properties of Metastable CuNbN2 and Theoretical Extension to
Other Ternary Copper Nitrides. Chem. Mater. 2014, 26, 4970−4977.
(
(
4) Sarmiento-Perez, R.; Cerqueira, T. F. T.; Korbel, S.; Botti, S.;
́
̈
Marques, M. A. L. Prediction of Stable Nitride Perovskites. Chem.
Mater. 2015, 27, 5957−5963.
(
5) Hinuma, Y.; Hatakeyama, T.; Kumagai, Y.; Burton, L. A.; Sato,
H.; Muraba, Y.; Iimura, S.; Hiramatsu, H.; Tanaka, I.; Hosono, H.;
F
Inorg. Chem. XXXX, XXX, XXX−XXX