X. Li et al. / Journal of Catalysis 238 (2006) 39–45
45
concentration of sulfate species (see Fig. 6). At the same time,
Acknowledgments
the intensity of the bands corresponding to the terminal and
bridging hydroxyl groups of ZrO2 decrease dramatically af-
ter SO3 sulfation. Although we do not wish to speculate on
the nature of the newly formed OH groups, we would like to
point to quantum chemical calculations [32] and suggest that
the hydroxy groups in these models are related to hydroxylated
pyrosulfate or bisulfate species [33,34].
In our study, sulfation with gaseous SO3 has been success-
fully applied to already crystallized samples despite the pres-
ence/absence of sulfate groups before calcination and the crys-
tallographic form of zirconia. SO3 sulfation has been purposely
applied to already crystallized samples to gain insight into the
nature of the real sulfating agent (SO3) and the function of the
calcination procedure. It has been claimed that calcination of
SZ precursors at high temperature by aqueous sulfation of an
amorphous zirconium hydroxide or crystalline zirconia is a nec-
essary step in generating active sites. This calcination is claimed
to convert the amorphous zirconium hydroxide to tetragonal
zirconia, to bind the sulfate groups with the zirconia surface
Financial support from the Deutsche Forschungsgemein-
schaft (DFG) in the framework of DFG priority program 1091,
“Bridging the gap in Heterogeneous Catalysis,” is gratefully
acknowledged. The authors are indebted to Dr. C. Breitkopf,
Dr. S. Wrabetz, M. Standke, Dr. K. Meinel, and Dr. A. Hof-
mann, and thank Professor J. Sauer, Professor H. Papp, and
Dr. F. Jentoft for valuable discussions.
References
[
[
[
[
1] T. Yamaguchi, K. Tanabe, Y.C. Kung, Mater. Chem. Phys. 16 (1986) 67.
2] J.R. Sohn, H.W. Kim, J. Mol. Catal. 52 (1989) 361.
3] D. F a˘ rca s¸ iu, J.Q. Li, Appl. Catal. A 175 (1998) 1.
4] M.T. Tran, N.S. Gnep, G. Szabo, M. Guisnet, Appl. Catal. A: Gen. 171
(1998) 207.
[5] M. Hino, S. Kobayashi, K. Arata, J. Am. Chem. Soc. 101 (1979) 6439.
[
[
[
[
6] R.A. Comelli, C.R. Vera, J.M. Parera, J. Catal. 151 (1995) 96.
7] C. Morterra, G. Cerrato, F. Pinna, M. Signoretto, J. Catal. 157 (1995) 109.
8] D. F a˘ rca s¸ iu, J.Q. Li, Appl. Catal. A: Gen. 128 (1995) 97.
9] F. Lonyi, J. Valyon, J. Engelhardt, F. Mizukami, J. Catal. 160 (1996) 279.
[
8,9,35], and in part to eliminate the excess sulfate groups from
[10] C. Morterra, G. Cerrato, M. Signoretto, Catal. Lett. 41 (1996) 101.
4+
Lewis acid sites, that is, coordinately unsaturated Zr [10,11].
The present study shows that sulfation with SO3 at 473 K can
generate active sites without calcination and that Lewis acid
sites are primarily needed for binding SO3. Thus, in the con-
ventional preparation method using a liquid sulfating agent, the
calcination of the sulfated precursor at high temperatures serves
only to generate the SO3 in situ so that it can be captured, form-
ing pyrosulfate groups.
[11] C. Morterra, G. Cerrato, G. Meligrana, M. Signoretto, F. Pinna, G. Strukul,
Catal. Lett. 73 (2001) 113.
[12] W. Stichert, F. Schüth, J. Catal. 174 (1998) 242.
[13] C.R. Vera, J.M. Parera, J. Catal. 165 (1997) 254.
[14] A.F. Bedilo, A.S. Ivanova, N.A. Pakhomov, A.M. Volodin, J. Mol. Catal.
A: Chem. 158 (2000) 409.
[15] T. Yamaguchi, T. Jin, K. Tanabe, J. Phys. Chem. 90 (1986) 3148.
[16] J.F. Haw, J. Zhang, K. Shimizu, T.N. Venkatraman, D.P. Luigi, W. Song,
D.H. Barich, J.B. Nicholas, J. Am. Chem. Soc. 122 (2000) 12561.
[
[
17] J. Zhang, J.B. Nicholas, J.F. Haw, Angew. Chem. Int. Ed. 39 (2000) 3302.
18] P. Canton, R. Olindo, F. Pinna, G. Strukul, P. Riello, M. Meneghetti,
G. Cerrato, C. Morterra, A. Benedetti, Chem. Mater. 13 (2001) 1634.
19] X. Li, K. Nagaoka, J.A. Lercher, J. Catal. 227 (2004) 130.
20] N. Katada, J. Endo, K. Notsu, N. Yasunobu, N. Naito, M. Niwa, J. Phys.
Chem. B 104 (2000) 10321.
5
. Conclusion
[
[
Sulfation with gaseous SO3 has been shown to be an effec-
tive new approach for preparing highly active SZ. This novel
method avoids complex preparation procedures and allows us
to tailor the activity of the catalyst. Labile sulfate species are es-
sential for the formation of active sites, which can be removed
by water-washing treatment and recovered by SO3 sulfation of
crystalline zirconia materials. The decrease in Lewis acidity
after SO3 sulfation indicates that at least some of the labile sul-
fates are coordinately bound to the Lewis acid sites. The labile
sulfate groups induce Brønsted acidity on the zirconia surface.
The increase in Brønsted acid sites and the significant decrease
in zirconia surface OH groups by SO3 sulfation indicate that
Brønsted acid sites are affiliated with pyrosulfate or bisulfate
species. In conventionally prepared materials, the activity of zir-
conia depends critically on the ability to partly decompose and
chemisorb SO3 during calcination and thereby form active py-
rosulfate groups. The direct chemisorption of SO3 circumvents
this step and opens so a wide area of surface modifications for
oxides that has not been available to now.
[
21] W. Hertl, Langmuir 5 (1989) 96.
[22] A.A. Tsyganenko, V.N. Filimonov, J. Mol. Struct. 19 (1973) 579.
[23] T. Yamaguchi, T. Jin, K. Tanabe, J. Phys. Chem. 90 (1986) 3148.
[24] M. Waqif, J. Bachelier, O. Saur, J.C. Lavalley, J. Mol. Catal. 72 (1992)
127.
[25] C.A. Emeis, J. Catal. 141 (1993) 347.
[26] X. Li, K. Nagaoka, L.J. Simon, R. Olindo, J.A. Lercher, A. Hofmann,
J. Sauer, J. Am. Chem. Soc., in press.
[27] X. Li, K. Nagaoka, L.J. Simon, R. Olindo, J.A. Lercher, J. Catal. 232
2005) 456.
(
[
[
[
28] X. Li, K. Nagaoka, L.J. Simon, R. Olindo, J.A. Lercher, in preparation.
29] K. Arata, Adv. Catal. 37 (1990) 165.
30] A. Clearfield, G.P.D. Serrette, A.H. Khazi-Syed, Catal. Today 20 (1994)
2
95.
[31] C. Morterra, G. Cerrato, C. Emanuel, C. Bolis, J. Catal. 142 (1993) 349.
[32] A. Hofmann, J. Sauer, J. Phys. Chem. B 108 (2004) 14652.
[33] L.M. Kustov, V.B. Kazansky, F. Figueras, D. Tichit, J. Catal. 150 (1994)
143.
[
34] V. Adeeva, J.W. de Haan, J. Janchen, G.D. Lei, V. Schunemann, L.J.M.
van de Ven, W.M.H. Sachtler, R.A. van Santen, J. Catal. 151 (1995) 364.
[35] T. Yamaguchi, K. Tanabe, Mater. Chem. Phys. 16 (1986) 67.