3-Fluoropropene
J. Phys. Chem. A, Vol. 103, No. 13, 1999 1985
TABLE 7: Torsional Transitions (cm-1) and Assignment of
Gaseous 3-Fluoropropene
scopic equipment utilized in this study. J.R.D. acknowledges
partial support of these studies by the University of Missouri-
Kansas City Faculty Research Grant program. The authors also
acknowledge NATO for a travel grant, which made it possible
to complete this study.
conformer
cis
transition
observed
calculateda
∆
1 r 0
2 r 1
3 r 2
4 r 3
1- r 0(
2- r 1(
3- r 2(
99.75
164.41
157.69
151.392
142.57
108.05
104.55
99.62
164.36
158.11
150.91
143.50
108.05
104.38
99.38
0.05
-0.42
0.49
1.32
0.00
0.28
-0.13
Supporting Information Available: Table VIIIS listing the
fit of the rotational constants (MHz) of cis and gauche
3-fluoropropene microwave-adjusted structural parameters (ro).
This material is available free of charge via the Internet at http://
pubs.acs.org.
gauche
0.24
a Calculated with the six-parameter potential function listed in Table
4.
References and Notes
dihedral angle obtained from the fit of the microwave data for
the gauche conformer to eliminate the strong correlation of the
V1 and V2 terms in the potential function. The fit of the torsional
fundamentals for the two conformers and the associated “hot
bands” is given in Table 7. The determined potential parameters
are listed in Table 4 and compared to those obtained in previous
studies of 3-fluoropropene, as well as those obtained from the
various ab initio calculations. Because of the much lower value
for ∆H, the V1 term is now negative (-162 ( 9 cm-1), whereas
it was previously reported as positive (36 ( 9 cm-1). The
negative value is consistent with the value of this parameter
from the ab initio calculations. The other parameters are very
similar to those previously obtained except for the V5 term,
which now has a small negative value (-13 ( 5 cm-1), whereas
it was previously reported as positive (14 ( 8 cm-1) from the
previously reported potential function governing the conforma-
tional interchange.
It is interesting to compare the enthalpy difference between
the two stable conformers when the hydrogen on the carbon
2-position is replaced by a methyl group or a chlorine atom.
With the substitution of the chlorine atom at the 2-position there
is stabilization of the cis conformer that is predicted by the ab
initio calculations.27 On the other hand, substitution of a methyl
group at the 2-position favors the gauche conformer, and the
ab initio calculations indicate that the two conformers have
nearly equal energies.28 The preliminary results for the molecule
substituted with a methyl group on the 1-position indicate that
the gauche conformer is favored. It would be interesting to see
if the ab initio calculations predict this trend for this molecule,
and we plan to carry out such calculations in the near future.
In general, the theoretical calculations with a relatively large
basis set at the MP2 level can provide accurate geometric
parameters and reasonable guidance for the vibrational assign-
ment. However, as shown in the present study, when calculating
the energy difference between molecular conformers with values
less than 1.0 kcal/mol, caution must be used on utilizing the
conformer stability information. At this time the results need
to be verified by an experimental investigation.29
(1) Hirota, E. J. Chem. Phys. 1965, 42, 2071.
(2) Meakin, P.; Harris, D. D.; Hirota, E. J. Chem. Phys. 1969, 51, 3775.
(3) McLachlan, R. D.; Nyquist, R. A. Spectrochim. Acta 1968, 24A,
103.
(4) Durig, J. R.; Zhen, M.; Little, T. S. J. Chem. Phys. 1984, 81, 4259.
(5) Durig, J. R.; Zhen, M.; Heusel, H. L.; Joseph, P. J.; Groner, P.;
Little, T. S. J. Phys. Chem. 1985, 89, 2877.
(6) Durig, J. R.; Geyer, T. J.; Little, T. S.; Durig, D. T. J. Mol. Struct.
1988, 172, 165.
(7) Santhanam, V.; Sobhanadri, J.; Subramaniam, S. Pramana 1988,
30, 51.
(8) Nieminen, J.; Murto, J.; Rasanen, M. Spectrochim. Acta 1991, 47A,
1495.
(9) Durig, J. R.; Lee, M. J.; Badawi, H. M.; Sullivan, J. F.; Durig, D.
T. J. Mol. Struct. 1992, 266, 59.
(10) Durig, D. T.; Little, T. S.; Costner, T. G.; Durig, J. R. J. Mol. Struct.
1992, 266, 277.
(11) Bulanin, M. O. J. Mol. Struct. 1995, 347, 73.
(12) Moller, C.; Plesset, M. S. Phys. ReV. 1934, 46, 618.
(13) Hoffman, F. W. J. Org. Chem. 1949, 14, 105.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson,
G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision B.3; Gaussian
Inc.: Pittsburgh, PA, 1995.
(15) Pulay, P. Mol. Phys. 1969, 17, 197.
(16) Luppi, J.; Rasanen, M.; Murto, J.; Pajunen, P. J. Mol. Struct. 1991,
245, 307.
(17) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations;
McGraw-Hill: New York, 1955.
(18) Frisch, M. J.; Yamaguchi, Y.; Gaw, J. F.; Schaefer, H. F., III;
Binkley, J. S. J. Chem. Phys. 1986, 84, 531.
(19) Amos, R. D. Chem. Phys. Lett. 1986, 124, 376.
(20) Chantry, G. W. In The Raman Effect; Anderson, A., Ed.; Marcel
Dekker Inc.: New York, 1971; Vol. 1, Chapter 2.
(21) Polavarapu, P. L. J. Phys. Chem. 1990, 94, 8106.
(22) Bulanin, M. O. J. Mol. Struct. 1973, 19, 59.
(23) van der Veken, B. J.; DeMunck, F. R. J. Chem. Phys. 1992, 97,
3060.
(24) Herrebout, W. A.; van der Veken, B. J.; Wang, A.; Durig, J. R. J.
Phys. Chem. 1995, 99, 578.
(25) Herrebout, W. A.; van der Veken, B. J. J. Phys. Chem. 1996, 100,
9671.
(26) Wong, M. W.; Frisch, M. J.; Wiberg, K. B. J. Am. Chem. Soc.
1991, 113, 4776.
(27) Durig, D. T.; Guirgis, G. A.; Durig, J. R. Struct. Chem. 1992, 3,
347.
(28) Durig, J. R.; Qui, H. Z.; Durig, D. T.; Zhen, M.; Little, T. S. J.
Phys. Chem. 1991, 95, 2745.
(29) Mack, H. G.; Oberhammer, H. J. Mol. Struct.: THEOCHEM 1992,
258, 197.
Acknowledgment. W.A.H. thanks the Fund for Scientific
Research (FWO, Belgium) for successive appointments as a
Research Assistant and Postdoctoral Fellow. The FWO is also
thanked for financial help toward the purchase of the spectro-