Journal of the American Chemical Society
COMMUNICATION
used as macromonomers for the synthesis of triblock copolymers
and should also prove useful as cross-linkable chain extenders in
polyurethanes and polyetheresters.
’ ASSOCIATED CONTENT
Supporting Information. Experimental details; 1H, 13C,
S
b
1
1
and HÀ H COSY NMR spectra; and ESI-MS and differntial
scanning calorimetry traces. This material is available free of
’ AUTHOR INFORMATION
Figure 4. Polymerization mechanism (PF6 anions have been omitted for
clarity).
Corresponding Author
0.0024 mmol) in anhydrous 1:1 hexene/benzene (4 mL) for 12 h
afforded PLA with Mn = 6700 g/mol, and H NMR analysis
1
’ ACKNOWLEDGMENT
We acknowledge support from the NSF (GOALI CHE-0645891
and NSF-CHE-0910729). We thank Purac for a generous donation
of lactide. This work was also supported by the NRF of the Korean
Ministry of Education, Science and Technology (NRF-2010-357-
C00059 to H.K.).
indicated the absence of poly(butenediol). Taken together, these
results suggest that the poly(butenediol)s generated from con-
densation of cis-2-butene-1,4-diol are oligomeric telechelic diols
that can function as macroinitiators for the generation of triblock
copolymers.4
Shown in Figure 4 is one proposed mechanism for the
oligomerization. On the basis of previous studies15,18,31 and
model reactions (eqs 1 and 2), we propose that the Ru(IV) allyl
precursor 1 reacts with cis-2-butene-1,4-diol with the elimination
of cis-4-(allyloxy)but-2-en-1-ol to generate a solvated Ru(II)
species. This Ru(II) complex can react with either the monomer
or an allylic alcohol chain end to generate Ru(IV) allyl 4 with
concomitant elimination of water. Nucleophilic displacement of
the allyl ligand of 4 by either monomer or ROH chain ends
results in chain extension.18,31À33 Attempts to isolate or char-
acterize intermediate 4 have proven unsuccessful, but we propose
that the endo-syn Ru allyl species 4s is formed from Ru(II) and
cis-2-butene-1,4-diol. As we observed only trans-butenyl ethers
in the polymer chain, we propose that syn-anti isomerization of
the Ru(IV) allyl21,22 is competitive with chain growth. This was
corroborated by model studies in which an aqueous solution
of cis-2-butene-1,4-diol was observed to isomerize to trans-
2-butene-1,4-diol in the presence of 1.5 mol % 1.
’ REFERENCES
(1) Telechelic Polymers: Synthesis and Applications; Goethals, E. J., Ed.;
CRC Press: Boca Raton, FL, 1989.
(2) Phillips, J. P.; Deng, X.; Stephen, R. R.; Fortenberry, E. L.; Todd,
M. L.; McClusky, D. M.; Stevenson, S.; Misra, R.; Morgan, S.; Long, T. E.
Polymer 2007, 48, 6773.
(3) Young, A. M.; Ho, S. M. J. Controlled Release 2008, 127, 162.
(4) Pitet, L. M.; Hillmyer, M. A. Macromolecules 2009, 42, 3674.
(5) Thomas, R. M.; Grubbs, R. H. Macromolecules 2010, 43, 3705.
(6) Schwendeman, J. E.; Wagener, K. B. Macromol. Chem. Phys.
2009, 210, 1818.
(7) Ozturk, G. I.; Pasquale, A. J.; Long, T. E. J. Adhes. 2010, 86, 395.
(8) Zeitsch, K. J. The Chemistry and Technology of Furfural and its
Many By-products; Elsevier: Amsterdam, 2000.
(9) Hillmyer, M. A.; Grubbs, R. H. Macromolecules 1993, 26, 872.
(10) Gascon, C.; Lucas, F.; Carlotti, S.; Deffieux, A. J. Appl. Polym.
Sci. 2010, 118, 1830.
(11) Manjari, R.; Joseph, V. C.; Pandureng, L. P.; Sriram, T. J. Appl.
The high selectivity for linear enchainment in the oligomer-
ization of cis-2-butene-1,4-diol (80À96% linear, depending on
the conditions) or allylation of methanol with cis-2-pentenol
(eq 2) implies that terminal attack of the alcohol on the allyl
intermediate 4 is preferred. This atypical regioselectivity is
important for chain growth, as branched allylic alcohol termini
can function as nucleophiles but not as readily as electrophiles.
Complexes of CpRu typically exhibit low regioselectivity in favor
of the linear isomer;34,35 the more sterically demanding penta-
methylcyclopentadienylruthenium (Cp*Ru) complexes (including
those ligated by quinaldic acid) exhibit high selectivities for branched
isomers.35À40
In summary, we have reported the synthesis of unsaturated
telechelic diols by Ru-catalyzed step-growth condensation of
cis-2-butene-1,4-diol. While step-growth polymerization of allylic
AB monomers or combinations of AA and BB monomers (where
A = allylic electrophile and B = nucleophile) is known,41,42 the
ability of allylic alcohols to function as both nucleophiles and
electrophiles in the presence of Ru catalyst 1 enables the facile
formation of polyethers with the elimination of water as the only
byproduct. The unsaturated telechelic polyether diols can be
Polym. Sci. 1993, 48, 271.
(12) Coutinho, F. M. B.; Delpech, M. C.; Alves, L. S. J. Appl. Polym.
Sci. 2001, 80, 566.
(13) Sanda, F.; Matsumoto, M. Macromolecules 1995, 28, 6911.
(14) Sanda, F.; Matsumoto, M. J. Appl. Polym. Sci. 1996, 59, 295.
(15) Tanaka, S.; Saburi, H.; Murase, T.; Yoshimura, M.; Kitamura,
M. J. Org. Chem. 2006, 71, 4682.
(16) Tanaka, S.; Saburi, H.; Ishibashi, Y.; Kitamura, M. Org. Lett.
2004, 6, 1873.
(17) Kitamura, M.; Tanaka, S.; Yoshimura, M. J. Org. Chem. 2002,
67, 4975.
(18) Kiesewetter, M. K.; Waymouth, R. M. Organometallics 2010,
29, 6051.
(19) Cooley, C. B.; Trantow, B. M.; Nederberg, F.; Kiesewetter,
M. K.; Hedrick, J. L.; Waymouth, R. M.; Wender, P. A. J. Am. Chem. Soc.
2009, 131, 16401.
(20) Tanaka, S. J.; Saburi, H.; Hirakawa, T.; Seki, T.; Kitamura, M.
Chem. Lett. 2009, 38, 188.
(21) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
(22) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(23) McKenna, J. M.; Wu, T. K.; Pruckmayr, G. Macromolecules
1977, 10, 877.
(24) Pruckmayr, G.; Wu, T. K. Macromolecules 1978, 11, 265.
16392
dx.doi.org/10.1021/ja207465h |J. Am. Chem. Soc. 2011, 133, 16390–16393