1
4
Simple Chiral Derivatization Protocols for H
is currently of great interest to the synthetic community. We
1
9
have recently developed simple three component chiral deriva-
tization protocols for determining the enantiopurity of chiral
amines, diols, and diamines. The enantiomeric excess of
scalemic diols are determined via derivatization with 2-formylphe-
nylboronic acid and a chiral amine to afford mixtures of
diastereoisomeric imino-boronate esters whose ratios are then
determined by H NMR spectroscopic analysis. Since no kinetic
resolution occurs in this derivatization process, the diastereoi-
someric ratio (dr) is an accurate measure of the enantiomeric
NMR and F NMR Spectroscopic Analysis of the
Enantiopurity of Chiral Diols
5
6
7
Sonia Lozano Yeste, Magdalena E. Powell, Steven D. Bull,*
and Tony D. James*
1
Department of Chemistry, UniVersity of Bath, Bath,
BA2 7AY, United Kingdom
6
s.d.bull@bath.ac.uk; t.d.james@bath.ac.uk
excess of the parent diol.
Comparison of our three component derivatization approach
with the widely used Mosher’s acid derivatization protocol
8
,9
ReceiVed September 2, 2008
reveals that it has a number of advantages. The main drawback
of using Mosher’s ester approach for diols is the need to employ
excess chiral derivatizing agent (CDA) to ensure that no kinetic
resolution occurs when both alcohol functionalities react with
two equivalents of the CDA. Contrastingly, our derivatization
approach results in both alcohol functionalities of the diol
reacting rapidly with a single boronic acid template, which
ensures that no kinetic resolution occurs. This means that a wide
range of diols can be rapidly derivatized using moisture
insensitive reagents to quantitatively afford mixtures of dias-
1
tereoisomeric imino-boronate esters whose H NMR spectra
display at least one pair of baseline-resolved diastereotopic
resonances that can be integrated to accurately determine
diastereoisomeric excess (de). However, one potential advantage
of the Mosher’s acid derivatization approach for chiral diols is
1
the ability to determine diastereomeric excess using both H
1
9
8,9
and F NMR spectroscopy. Consequently, we now describe
herein the development of second generation three-component
chiral derivatization protocols that also enable the ee of chiral
1
9
diols to be accurately determined by F NMR spectroscopic
analysis.
Two practically simple chiral derivatization protocols for
1
determining the enantiopurity of chiral diols by H NMR
Our first strategy was to develop a derivatization protocol
employing a commercially available chiral fluorous amine as a
chiral auxiliary. Therefore, six chiral diols 3a-f were mixed
19
and F NMR spectroscopic analysis are described, involving
treatment of the diol with 2-formylphenylboronic acid and
R-methyl-4-fluorobenzylamine, or its derivatization with
(
4) (a) Freire, F.; Seco, J. M.; Quinoa, E.; Riguera, R. J. Org. Chem. 2005,
4
-fluoro-2-formylphenylboronic acid and R-methyl-benzyl-
7
0, 3778–3790. (b) Freire, F.; Seco, J. M.; Quinoa, E.; Riguera, R. Org. Lett.
amine. Both approaches afford mixtures of imino-boronate
esters whose diastereomeric ratio may be measured by H
NMR or F NMR spectroscopy, the value of which is an
accurate reflection of the enantiopurity of the parent diol.
2005, 7, 4855–4858. (c) Caselli, E.; Danieli, C.; Morandi, S.; Bonfiglio, B.; Forni,
1
A.; Prati, F. Org. Lett. 2003, 5, 4863–4866. (d) Fukui, H.; Fukushi, Y.; Tahara,
S. Tetrahedron Lett. 2003, 44, 4063–4065. (e) Seco, J. M.; Martino, M.; Quinoa,
E.; Riguera, R. Org. Lett. 2000, 2, 3261–3264. (f) Kouda, K.; Ooi, T.; Kusumi,
T. Tetrahedron Lett. 1999, 40, 3005–3008. (g) Garner, C. M.; McWhorter, C.;
Goerke, A. R. Tetrahedron Lett. 1997, 38, 7717–7720. (h) Resnick, S. M.; Torok,
D. S.; Gibson, D. T. J. Org. Chem. 1995, 60, 3546–3549. (i) Brunel, J. M.;
Faure, B. Tetrahedron: Asymmetry 1995, 6, 2353–2356. (j) Burgess, K.; Porte,
A. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1182–1184. (k) Tokles, M.; Snyder,
J. K. Tetrahedron Lett. 1988, 29, 6063–6066.
1
9
Introduction
1
,2
(5) (a) Perez-Fuertes, Y.; Kelly, A. M.; Johnson, A. L.; Arimori, S.; Bull,
S. D.; James, T. D. Org. Lett. 2006, 8, 609–612. (b) Axe, P.; Bull, S. D.;
Davidson, M. G.; Gilfillan, C. J.; Jones, M. D.; Robinson, D. E. J. E.; Turner,
L. E.; Mitchell, W. L. Org. Lett. 2007, 9, 223–226. (c) Taylor, P. J. M.; Bull,
S. D. Tetrahedron: Asymmetry 2006, 17, 1170–1178. (d) Perez-Fuertes, Y.; Kelly,
A. M.; Fossey, J. S.; Powell, M. E.; Bull, S. D.; James, T. D. Nat. Protoc. 2008,
3, 210–214.
The prevalence of chiral diols as synthetic intermediates
3
and as fragments of biologically active compounds has led to
a great demand for reliable techniques to accurately determine
their enantiopurity. Consequently, the development of inexpen-
sive chiral derivatization protocols that allow their enantiomeric
excess to be simply determined by NMR spectroscopic analysis
(6) (a) Kelly, A. M.; Perez-Fuertes, Y.; Arimori, S.; Bull, S. D.; James, T. D.
Org. Lett. 2006, 8, 1971–1974. (b) Chopard, C.; Azerad, R.; Prange, T. J. Mol.
Catal. B 2008, 50, 53–60.
(7) Kelly, A. M.; Bull, S. D.; James, T. D. Tetrahedron: Asymmetry 2008,
19, 489–494.
(8) (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543–
2549. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519.
(9) Seco, J. M.; Quinoa, E.; Riguera, R. Chem. ReV. 2004, 104, 17–118.
(
(
1) Challener, C. A. Chiral Intermediates; Wiley: London, 2004.
2) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994,
9
4, 2483–2547.
(3) Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach;
Pergamon: London, 1983.
1
0.1021/jo8019187 CCC: $40.75 2009 American Chemical Society
J. Org. Chem. 2009, 74, 427–430 427
Published on Web 12/02/2008