10.1002/chem.201905447
Chemistry - A European Journal
FULL PAPER
[21] A. Meddour, I. Canet, A. Loewenstein, J. M. Pechine, J. Courtieu, J. Am.
Chem. Soc. 1994, 116, 9652–9656.
[22] A. Marx, V. Schmidts, C. M. Thiele, Magn. Reson. Chem. 2009, 47,
734–740.
[23] S. Hansmann, T. Larem (née Montag), C. M. Thiele, Eur. J. Org. Chem.
2016, 2016, 1324–1329.
[24] C. M. Thiele, J. Org. Chem. 2004, 69, 7403–7413.
[25] N.-C. Meyer, A. Krupp, V. Schmidts, C. M. Thiele, M. Reggelin, Angew.
Chem. Int. Ed. 2012, 51, 8334–8338.
[26] A. Krupp, M. Reggelin, Magn. Reson. Chem. 2012, 50, S45–S52.
[27] L. Arnold, A. Marx, C. M. Thiele, M. Reggelin, Chem. – Eur. J. 2010, 16,
10342–10346.
[28] M. Reller, S. Wesp, M. R. M. Koos, M. Reggelin, B. Luy, Chem. – Eur. J.
2017, 23, 13351–13359.
[29] M. Sarfati, J. Courtieu, P. Lesot, Chem. Commun. 2000, 1113–1114.
[30] P. Lesot, M. Sarfati, J. Courtieu, Chem. – Eur. J. 2003, 9, 1724–1745.
[31] O. Lafon, P. Lesot, M. Rivard, M. Chavarot, F. Rose-Munch, E. Rose,
Organometallics 2005, 24, 4021–4028.
[32] M. Sarfati, P. Lesot, D. Merlet, J. Courtieu, Chem. Commun. 2000,
2069–2081.
14
13
11
12
7
10
15
9
6
8
O
O
5
4
3
1
N
2
H
O
n
[α]D20 = -60.50° (c = 0.1, THF); 1H-NMR (700 MHz, 300 K, CDCl3): δ =
1.46 (br, 1H, 11-Ha), 1.71 (br, 3H, 15-H), 1.82 (br, 1H, 11-Hb), 1.93 (br,
1H, 9-Ha), 2.05 (br, 2H, 12-H), 2.13 (br, 2H, 9-Hb, 10-H), 2.37 (br, 2H, 3-
H), 2.73 (br, 2H, 4-H), 3.98 (br, 1H, 2-H), 4.38 (br, 1H, 6-Ha), 4.53 (br, 1H,
6-Hb), 4.69 (br, 1H, 14-Ha), 4.70 (br, 1H, 14-Hb) 5.71 (br, 1H, 8-H) ppm;
13C-NMR (175 MHz, 300 K, CDCl3): δ = 20.9 (15-C), 26.5 (12-C), 27.5
(11-C), 30.6 (9-C), 41.0 (10-C), 68.3 (6-C), 108.9 (14-C), 125.3 (8-C),
132.8 (7-C), 149.7 (13-C), 172.3 (5-C) ppm.
[33] P. Lesot, P. Berdagué, A. Meddour, A. Kreiter, M. Noll, M. Reggelin,
ChemPlusChem 2019, 84, 144–153.
[34] R. Berger, J. Courtieu, R. R. Gil, C. Griesinger, M. Köck, P. Lesot, B.
Luy, D. Merlet, A. Navarro-Vázquez, M. Reggelin, et al., Angew. Chem.
Int. Ed. 2012, 51, 8388–8391.
NMR samples and data
Detailed information on sample preparation as well as the collection of
NMR data are given in the supporting information.
[35] M. Schwab, D. Herold, C. M. Thiele, Chem. – Eur. J. 2017, 23, 14576–
14584.
[36] S. Hansmann, V. Schmidts, C. M. Thiele, Chem. – Eur. J. 2017, 23,
9114–9121.
[37] S. Jeziorowski, C. M. Thiele, Chem. – Eur. J. 2018, 24, 15631–15637.
[38] M. Hirschmann, M. Schwab, C. M. Thiele, Macromolecules 2019, 52,
6025–6034.
Acknowledgements
[39] Z. Serhan, C. Aroulanda, P. Lesot, J. Phys. Chem. A 2016, 120, 6076–
6088.
[40] P. Lesot, O. Lafon, C. Aroulanda, R. Y. Dong, Chem. – Eur. J. 2008, 14,
4082–4092.
[41] A. Marx, C. Thiele, Chem. – Eur. J. 2009, 15, 254–260.
[42] H. Yamamoto, Y. Kondo, T. Hayakawa, Biopolymers 1970, 9, 41–52.
[43] I. Schumann, R. A. Boissonnas, Nature 1952, 169, 154–155.
[44] W. A. R. Van Heeswijk, M. J. D. Eenink, J. Feijen, Synthesis 1982, 1982,
744–747.
[45] R. Albert, J. Danklmaier, H. Hönig, H. Kandolf, Synthesis 1987, 1987,
635–637.
[46] G. H. L. Nefkens, B. Zwanenburg, Tetrahedron 1983, 39, 2995–2998.
[47] F. Albericio, E. Nicolas, J. Rizo, M. Ruiz-Gayo, E. Pedroso, E. Giralt,
Synthesis 1990, 1990, 119–122.
[48] N. M. B. Smeets, P. L. J. van der Weide, J. Meuldijk, J. A. J. M.
Vekemans, L. A. Hulshof, Org. Process Res. Dev. 2005, 9, 757–763.
[49] J. R. Kramer, T. J. Deming, Biomacromolecules 2010, 11, 3668–3672.
[50] K. M. Lippert, K. Hof, D. Gerbig, D. Ley, H. Hausmann, S. Guenther, P.
R. Schreiner, Eur. J. Org. Chem. 2012, 2012, 5919–5927.
[51] W. Zhao, Y. Gnanou, N. Hadjichristidis, Polym. Chem. 2015, 6, 6193–
6201.
[52] J. W. Emsley, P. Lesot, D. Merlet, Phys. Chem. Chem. Phys. 2004, 6,
522–530.
[53] A. Enthart, J. C. Freudenberger, J. Furrer, H. Kessler, B. Luy, J. Magn.
Reson. 2008, 192, 314–322.
[54] G. Kummerlöwe, S. Schmitt, B. Luy, Open Spectrosc. J. 2010, 4, 16–27.
[55] R. Berger, C. Fischer, M. Klessinger, J. Phys. Chem. A 1998, 102,
7157–7167.
[56] C. M. Thiele, V. Schmidts, B. Böttcher, I. Louzao, R. Berger, A. Maliniak,
B. Stevensson, Angew. Chem. Int. Ed. 2009, 48, 6708–6712.
[57] V. Schmidts, Ph.D. Thesis, TU Darmstadt, 2013.
[58] J. Sass, F. Cordier, A. Hoffmann, M. Rogowski, A. Cousin, J. G.
Omichinski, H. Löwen, S. Grzesiek, J. Am. Chem. Soc. 1999, 121,
2047–2055.
[59] F. Kramer, M. V. Deshmukh, H. Kessler, S. J. Glaser, Concepts Magn.
Reson. Part A 2004, 21A, 10–21.
[60] D. Sinnaeve, M. Foroozandeh, M. Nilsson, G. A. Morris, Angew. Chem.
Int. Ed. 2016, 55, 1090–1093.
[61] D. Sinnaeve, J. Ilgen, M. E. Di Pietro, J. J. Primozic, V. Schmidts, C. M.
Thiele, B. Luy, Angew. Chem. Int. Ed. 2020, n/a, DOI
10.1002/anie.201915278.
[62] J. Saurí, P. Nolis, L. Castañar, A. Virgili, T. Parella, J. Magn. Reson.
2012, 224, 101–106.
The authors thank the Fonds der chemischen Industrie (FCI) for
a Ph.D. scholarship and financial support. We would like to
thank Davy Sinnaeve for being able to use the pulse sequences
for HH-RDC measurements prior to publication and Julian Ilgen
for the help with setup and evaluation of the resulting data.
Furthermore we acknowledge Volker Schmidts for the support
concerning the software RDC@hotfcht and Max Hirschmann for
advice concerning the 0.01mm cuvettes for CD measurements.
Keywords: polymers • NMR spectroscopy • alignment medium •
chirality • peptides
[1]
[2]
[3]
[4]
[5]
[6]
[7]
V. Schmidts, Magn. Reson. Chem. 2017, 55, 54–60.
G. Kummerlöwe, B. Luy, TrAC Trends Anal. Chem. 2009, 28, 483–493.
A. W. Overhauser, Phys. Rev. 1953, 92, 411–415.
F. A. L. Anet, A. J. R. Bourn, J. Am. Chem. Soc. 1965, 87, 5250–5251.
R. Kaiser, J. Chem. Phys. 1965, 42, 1838–1839.
M. Karplus, J. Chem. Phys. 1959, 30, 11–15.
C. A. G. Haasnoot, F. A. A. M. de Leeuw, C. Altona, Tetrahedron 1980,
36, 2783–2792.
[8]
[9]
N. Tjandra, A. Bax, Science 1997, 278, 1111.
C. M. Thiele, Eur. J. Org. Chem. 2008, 2008, 5673–5685.
[10] B. Luy, J. Indian Inst. Sci. 2010, 90, 119–132.
[11] B. Böttcher, C. M. Thiele, in EMagRes, John Wiley & Sons, Ltd, 2012.
[12] G. Kummerlöwe, M. U. Kiran, B. Luy, Chem. – Eur. J. 2009, 15, 12192–
12195.
[13] M. Schmidt, H. Sun, A. Leonov, C. Griesinger, U. M. Reinscheid, Magn.
Reson. Chem. 2012, 50, S38–S44.
[14] T. Montag, C. M. Thiele, Chem. – Eur. J. 2013, 19, 2271–2274.
[15] C. Aroulanda, M. Sarfati, J. Courtieu, P. Lesot, Enantiomer 2001, 6,
281–287.
[16] M. Schwab, V. Schmidts, C. M. Thiele, Chem. – Eur. J. 2018, 24,
14373–14377.
[17] G.-W. Li, J.-M. Cao, W. Zong, L. Hu, M.-L. Hu, X. Lei, H. Sun, R. X. Tan,
Chem. – Eur. J. 2017, 23, 7653–7656.
[18] M. Leyendecker, N.-C. Meyer, C. M. Thiele, Angew. Chem. Int. Ed. 2017,
56, 11471–11474.
[19] K. Knoll, M. Leyendecker, C. M. Thiele, Eur. J. Org. Chem. 2019, 2019,
720–727.
[20] P. Lesot, C. Aroulanda, P. Berdagué, A. Meddour, D. Merlet, J. Farjon,
N. Giraud, O. Lafon, Prog. Nucl. Magn. Reson. Spectrosc. 2019, DOI
10.1016/j.pnmrs.2019.10.001.
[63] T. W. Baughman, J. C. Sworen, K. B. Wagener, Tetrahedron 2004, 60,
10943–10948.
[64] A. F. Barrero, M. M. Herrador, J. F. Quílez del Moral, P. Arteaga, J. F.
Arteaga, H. R. Diéguez, E. M. Sánchez, J. Org. Chem. 2007, 72, 2988–
2995.
This article is protected by copyright. All rights reserved.