J. Am. Chem. Soc. 1998, 120, 2951-2958
2951
The Role of Homolytic Bond Dissociation Energy in the
Deprotonation of Cation Radicals. Examples in the NADH
Analogues Series
Agn e` s Anne, Sylvie Fraoua, Val e´ rie Grass, Jacques Moiroux,* and Jean-Michel Sav e´ ant*
Contribution from the Laboratoire d’Electrochimie Mol e´ culaire de l’UniVersit e´ Denis Diderot,
Unit e´ Associ e´ e au CNRS No 438, 2 place Jussieu, 75251 Paris Cedex 05, France
ReceiVed October 27, 1997
Abstract: The deprotonation of the cation radical of 9-cyanomethylacridane by a series of normal bases is
investigated and its pKa and homolytic bond dissociation energy determined experimentally. The latter parameter
has the largest value in the NADH analogue series, thanks to the strong destabilization of the corresponding
cation by the cyano group. It thus allows a significant extension of the attempted correlation between the
intrinsic barriers and homolytic bond dissociation energies (D). Aside from members of the series where
bulky substituents cause a decelerating steric effect, the correlation is close to a proportionality to D/4. The
same correlation applies for all the other cation radicals where the rate constants of deprotonation by normal
bases are available. The respective contributions of the homolytic and ionic states in the dissociation of the
two types of acid, cation radicals and the conjugate acid of the normal base, are such that a simple model can
be developed which regards the deprotonation reaction as a concerted H atom/one-electron transfer. It explains
why, for each cation radical, the deprotonation by normal bases gives rise to a single Br o¨ nsted plot and why
the intrinsic barriers are proportional to D/4. In the NADH analogue series, the deviations from proportionality
observed with bulky substituents, and to a lesser extent, upon changing the extent of charge delocalization
over the cation radical molecule are accounted for by product and reactant work terms, respectively.
Deprotonation of hydrocarbons requires some form of activa-
tion of the carbon atom for the reaction to be amenable to
thermodynamic and kinetic characterization. There are two
main ways for decreasing the pKa of carbon-hydrogen bonds.
One involves the decrease of the electron density on the carbon
atom by means of an electron withdrawing group directly borne
by the carbon or located in a conjugated position to it on an
unsaturated substituent.1 The other consists of oxidizing the
substrate so as to produce the corresponding cation radical. The
resulting decrease in electron density induces a considerable
Scheme 1
the cation obtained after deprotonation of the cation radical and
further electron abstraction (Scheme 1) is stable. The rates of
deprotonation can thus be unambiguously determined in the
framework of the mechanism depicted in Scheme 1. Combining
the use of direct electrochemistry, redox catalysis, and laser flash
photolysis, they could be determined up to the diffusion limit,
-3
4
,5
decrease in the pKa as compared to the parent molecule. The
kinetics of the deprotonation of several families of cation
6
-14
radicals have been measured.
Among them the NADH
(
7) (a) Bacciochi, E.; Del Giacco, T.; Elisei, F. J. Am. Chem. Soc. 1993,
analogues series offers two advantageous features.14 One is that
1
15, 12290. (b) Bacciochi, E.; Bietti, M.; Putignani, L.; Steenken, S. J.
Am. Chem. Soc. 1996, 118, 5952.
(
1) (a) Bell, R. P.; Goodall, D. M. Proc. R. Soc. London, Ser. A 1966,
(8) (a) Dinnocenzo, J. P.; Banach, T. E. J. Am. Chem. Soc. 1989, 111,
8646. (b) Dinnocenzo, J. P.; Karki, S. B.; Jones, J. P. J. Am. Chem. Soc.
1993, 115, 7111.
2
94, 273. (b) Bordwell, F. G.; Boyle, W. J. J. Am. Chem. Soc. 1972, 94,
907. (c) Albery, W. J.; Campbell-Crawford, A. N.; Curran, J. S. J. Chem.
3
Soc., Perkin Trans. 1972, 2206.
2) (a) Bernasconi, C. F. Tetrahedron 1985, 41, 3219. (b) Bernasconi,
C. F. Acc. Chem. Res. 1987, 20, 301. (c) Bernasconi, C. F. AdV. Phys. Org.
Chem. 1992, 27, 119.
(9) (a) Xu, W.; Mariano, P. S. J. Am. Chem. Soc. 1991, 113, 1431. (b)
Xu, W.; Zhang, X. ; Mariano, P. S. J. Am. Chem. Soc. 1991, 113, 8863.
(10) (a) Reitst o¨ en, B.; Parker, V. D. J. Am. Chem. Soc. 1990, 112, 4698.
(b) Parker, V. D.; Chao, Y.; Reitst o¨ en, B. J. Am. Chem. Soc. 1991, 113,
2336. (c) Parker, V. D.; Tilset, M. J. Am. Chem. Soc. 1991, 113, 8778.
(11) (a) Fukuzumi, S.; Kondo, Y.; Tanaka, T. J. Chem. Soc., Perkin
Trans. 2 1984, 673. (b) Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto,
T.; Otera, J. J. Am. Chem. Soc. 1993, 115, 8960.
(12) Sinha, A.; Bruice, T. C. J. Am. Chem. Soc. 1984, 106, 7291.
(13) (a) Tolbert, L. M.; Khanna, R. K. J. Am. Chem. Soc. 1987, 109,
3477. (b) Tolbert, L. M.; Khanna, R. K.; Popp, A. E.; Gelbaum, L.;
Bettomley, L. A. J. Am. Chem. Soc. 1990, 112, 2373.
(
(
3) Terrier, F.; Boubaker, T.; Xiao, L.; Farrell, P. G. J. Org. Chem. 1992,
7, 3924. (b) Moutiers, G.; El Fahid, B.; Goumont, R.; Chatrousse, A. P.;
Terrier, F. J. Org. Chem. 1996, 61, 1978.
4) (a) Nicholas, A.; Arnold, D. R. Can. J. Chem. 1982, 60, 2165. (b)
Nicholas, A.; Boyd, R. J.; Arnold, D. R. Can. J. Chem. 1982, 60, 3011.
5) (a) Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc. 1989, 111, 1792.
b) Zhang, X.; Bordwell, F. G. J. Org. Chem. 1992, 57, 4163. (c) Zhang,
X.; Bordwell, F. G.; Bares, J. E.; Cheng, J. P. J. Org. Chem. 1993, 58,
5
(
(
(
3
051.
(14) (a) Hapiot, P. ; Moiroux, J.; Sav e´ ant, J.-M. J. Am. Chem. Soc. 1990,
112, 1337. (b) Anne, A.; Hapiot, P.; Moiroux, J.; Neta, P.; Sav e´ ant, J.-M.
J. Phys. Chem. 1991, 95, 2370. (c) Anne, A.; Hapiot, P.; Moiroux, J.; Neta,
P.; Sav e´ ant, J.-M. J. Am. Chem. Soc. 1992, 114, 4694. (d) Anne, A.; Fraoua,
S.; Hapiot, P.; Moiroux, J.; Sav e´ ant, J.-M. J. Am. Chem. Soc. 1995, 117,
7412.
(6) (a) Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. Am. Chem. Soc.
1
984, 106, 7472. (b) Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. Phys.
Chem. 1986, 90, 3747. (c) Masnovi, J. M.; Sankararaman, S.; Kochi, J. K.
J. Am. Chem. Soc. 1989, 111, 2263. (d) Sankararaman, S.; Perrier, S.; Kochi,
J. K. J. Am. Chem. Soc. 1989, 111, 6448.
S0002-7863(97)03725-6 CCC: $15.00 © 1998 American Chemical Society
Published on Web 03/13/1998