Free-Radical Approach to 4-Substituted Dipicolinates
FULL PAPER
[5] B. Schmidt, D. K. Ehlert, Tetrahedron Lett. 1998, 39, 3999–
4002.
[6] A. Hamasaki, H. Naka, F. Tamanoi, K. Umezawa, M. Otsuka,
Bioorg. Med. Chem. Lett. 2003, 13, 1523–1526.
[7] C. Platas-Iglesias, C. Piguet, N. Andre, J.-C. G. Bunzli, J.
Chem. Soc., Dalton Trans. 2001, 3084–3091.
[8] A. Cornejo, J. M. Fraile, J. I. García, E. García-Verdugo, M. J.
Gil, G. Legarreta, S. V. Luis, V. Martínez-Merino, J. A.
Mayoral, Org. Lett. 2002, 4, 3927–3930.
[9] Chelidamic acids can, however, be synthesized from acetone
and diethyl oxalate as shown in: B. Harirchian, J. L. Gormley,
Patent US5300657, 1994-04-05.
[10] H. Nishiyama, S. Yamaguchi, M. Kondo, K. Itoh, J. Org.
Chem. 1992, 57, 4306–4309.
[11] H. Takalo, J. Kankare, E. Hanninen, Acta Chem. Scand. Ser.
B 1988, 42, 448–454.
[12] a) A.-S. Chauvin, R. Tripier, J.-C. G. Bunzli, Tetrahedron Lett.
2001, 42, 3089–3091; b) A.-S. Chauvin, S. Gras, J.-C. G. Bunzli,
Org. Biomol. Chem. 2003, 1, 737–740; c) C. Lewis, J. Biol.
Chem. 1972, 247, 1861–1868.
[13] For a recent review see: A. Studer, M. Bossart, in: Radicals in
Organic Synthesis; vol. 2 (Eds.: P. Renaud, M. Sibi,), Wiley-
VCH, Weinheim, 2001, 62–80.
[14] a) G. H. Williams, in: Homolytic Aromatic Substitution, Perga-
mon, London, 1960, p. 106–107; b) L. Testaferri, M. Tiecco, P.
Spagnolo, P. Zanirato, G. Martelli, J. Chem. Soc., Perkin
Trans. 2 1976, 662–668.
[15] F. Minisci, Top. Curr. Chem. 1976, 62, 17–48.
[16] F. Minisci, R. Galli, V. Malatesta, T. Caronna, Tetrahedron
1970, 26, 4083–4091.
[17] T. Caronna, G. Fronza, F. Minisci, O. Porta, J. Chem. Soc.,
Perkin Trans. 2 1972, 2035–2038.
[18] F. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchunno,
Tetrahedron 1971, 27, 3575–3579.
[19] a) A. Citterio, F. Minisci, V. Franchi, J. Org. Chem. 1980, 45,
4752–4757; b) G. Heinisch, G. Lotsch, Heterocycles 1987, 26,
731–744; c) Y. Houminer, E. W. Southwick, D. L. Williams, J.
Heterocycl. Chem. 1986, 23, 497–500.
[20] For application of Bu3SnH-mediated free-radical aromatic sub-
stitution see: a) A. L. J. Beckwith, V. W. Bowry, W. R. Bow-
man, E. Mann, J. Parr, J. M. Storey, Angew. Chem. Int. Ed.
2004, 43, 95–98; b) F. Aldabbagh, W. R. Bowman, Tetrahedron
1999, 55, 4109–4122; c) F. Aldabbagh, W. R. Bowman, E.
Mann, A. M. Z. Slawin, Tetrahedron 1999, 55, 8111–8128.
[21] W. Buratti, G. P. Gardini, F. Minisci, F. Bertini, R. Galli, M.
Perchinunno, Tetrahedron 1971, 27, 3655–3688.
For large scales the resultant mixture was separated by the follow-
ing procedure. Chlorotrimethylsilane (9.0 mL, 71 mmol) and hexa-
methyldisilazane (15 mL, 71 mmol) were added to a solution of the
reaction mixture in CH2Cl2 (120 mL). The reaction mixture was
stirred for 70 min at room temperature, the precipitate of starting
dimethyl pyridine-2,6-dicarboxylate was filtered off, and the filtrate
was evaporated. The residue was diluted in 40 mL of a 2:1 mixture
of ether and petroleum ether and washed with water. The aqueous
solution was extracted with diethyl ether, the combined organic
solutions were evaporated, and the residue was dissolved in a mix-
ture of MeOH (10 mL) and aqueous HCl (10%, 10 mL). After 16 h
the resultant residue of title compound 9 was filtered (2.85 g, 24%).
1H NMR (300 MHz, CDCl3, after exchange of OH proton with
D2O): δ = 4.02 (s, 6 H), 4.89 (d, J = 5.4 Hz, 2 H), 8.31 ppm (s, 2
H). 13C NMR (75 MHz): δ = 53.2, 62.8, 125.3, 148.2, 153.5,
165.1 ppm. IR (film): ν = 784, 909, 1227, 1369, 1452, 1699, 1722,
˜
3486 cm–1. MH+ 226.1 calcd. 226.1. C10H11NO5 (225.20): found: C
53.08, H 5.19, N 6.05; calcd.: C 53.33, H 4.89, N 6.22. Chromato-
graphic separation with hexane/ethyl acetate (7:3 to 1:2) in an iden-
tical experiment provided a 30% yield of the title compound and
38% recovery of starting material.
Dimethyl 4-(2-Hydroxyethyl)pyridine-2,6-dicarboxylate (11): Solu-
tions of FeSO4·7H2O (4.17 g, 15 mmol) and H2O2 (30% aqueous
solution, 12 mL, 105 mmol) were added dropwise to a mixture of
dimethyl pyridine-2,6-dicarboxylate (2.93 g, 15 mmol), propane-
1,3-diol (13 mL, 180 mmol), and H2SO4 (30% aqueous solution,
20 mL). The reaction mixture was stirred for 15 min after comple-
tion of the addition, treated with saturated aq. K2CO3 to pH 2,
and extracted with ethyl acetate. The combined extracts were dried
and evaporated, and the residue was purified by flash chromatog-
raphy (hexane/ethyl acetate, 7:3 to 1:2) to yield the title compound
1
11 (1.29 g, 32%) and recovered starting material (25%). H NMR
(300 MHz, CDCl3): δ = 3.02 (t, J = 6.2 Hz, 2 H), 4.00 (t, J =
6.2 Hz, 2 H), 4.04 (s, 6 H), 8.23 ppm (s, 2 H). 13C NMR (75 MHz):
δ = 38.0, 53.0, 61.6, 128.7, 147.8, 151.6, 165.1 ppm. IR (film): 734,
909, 1218, 1253, 1363, 1445, 1604, 1729, 2955, 3450 cm–1 (br). MH+
(electrospray in the presence of MeSO3H): 240.3. C11H13NO5
(239.22): found: C 55.25, H 5.48, N 5.80; calcd.: C 55.23, H 5.48,
N 5.86.
[22] To the best of our knowledge, there are no quantitative data
on the basicity of dipicolinates in water media. Several mea-
surements[4] were done in dichloromethane, while attempts to
perform the measurements in methanol solutions failed.
[23] Substitutions in 4-cyanopyridine was reported to produce vari-
able amounts of 3-substitution: F. Coppa, F. Fontana, E. Laz-
zarini, F. Minisci, G. Pianese, L. Zhao, Tetrahedron Lett. 1992,
33, 3057–3060.
Acknowledgments
This research was supported by the Israel Science Foundation
(Grant No. 176/02-1).
[1] M. Latva, H. Takalo, K. Simberg, J. Kankare, J. Chem. Soc.,
Perkin Trans. 2 1995, 995–999; b) J. B. Lamture, B. Iverson,
M. E. Hogan, Tetrahedron Lett. 1996, 37, 6483–6486.
[24] G. P. Gardini, F. Minisci, J. Chem. Soc. 1970, 929–929.
[2] a) W. Berson, J. D. Auslander, Patent US5542971, 1996-08-06; [25] C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev.
b) J. Guilford, D. Yan, Patent US6402986, 2002-06-11; c) R. L.
Hale, D. W. Solas, Patent WO8904826, 1989-06-01.
[3] For a recent review on pybox ligands, see: G. Desimoni, G.
Faita, P. Quadrelli, Chem. Rev. 2003, 103, 3119–3154.
[4] a) O. Storm, U. Lüning, Eur. J. Org. Chem. 2002, 3680–3685;
b) O. Storm, U. Lüning, Eur. J. Org. Chem. 2003, 3109–3116.
1999, 99, 1991–2070, see pages 1999–2000 for decarbonylation
rates.
[26] Yields in procedure B are recovery-based.
[27] Formation of dimerization product of α-hydroxybenzyl-type
radicals has been reported.[21]
Received: September 7, 2004
Eur. J. Org. Chem. 2005, 1397–1401
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1401