Page 11 of 14
Journal of the American Chemical Society
(21) Kuhn, P.; Antonietti, M.; Thomas, A., Porous, covalent triazine-
based frameworks prepared by ionothermal synthesis. Angew. Chem. Int.
Ed. Engl. 2008, 47, 3450-3453.
are grateful for the crystallographic investigations being per-
formed by Peter Mayer.
1
2
3
4
5
6
7
8
9
(22) Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomacker,
R.; Thomas, A., Fast tuning of covalent triazine frameworks for
photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854-5857.
(23) Hug, S.; Stegbauer, L.; Oh, H.; Hirscher, M.; Lotsch, B. V.,
Nitrogen-rich covalent triazine frameworks as high-performance platforms
for selective carbon capture and storage. Chem. Mater. 2015, 27, 8001-
8010.
(24) Puthiaraj, P.; Lee, Y.-R.; Zhang, S.; Ahn, W.-S., Triazine-based
covalent organic polymers: design, synthesis and applications in
heterogeneous catalysis. J. Mater. Chem. A 2016, 4, 16288-16311.
(25) Medina, D. D.; Sick, T.; Bein, T., Photoactive and conducting
covalent organic frameworks. Adv. Energy Mater. 2017, 7, 1700387.
(26) Huang, N.; Wang, P.; Jiang, D., Covalent organic frameworks: a
materials platform for structural and functional designs. Nat. Rev. Mater.
2016, 1, 16068.
(27) Mellah, A.; Fernandes, S. P. S.; Rodriguez, R.; Otero, J.; Paz, J.;
Cruces, J.; Medina, D. D.; Djamila, H.; Espina, B.; Salonen, L. M.,
Adsorption of pharmaceutical pollutants from water using covalent
organic frameworks. Chem. Eur. J. 2018, 24, 10601-10605.
(28) Wang, W.; Deng, S.; Ren, L.; Li, D.; Wang, W.; Vakili, M.; Wang,
B.; Huang, J.; Wang, Y.; Yu, G., Stable covalent organic frameworks as
efficient adsorbents for high and selective removal of an aryl-
organophosphorus flame retardant from water. ACS Appl. Mater.
Interfaces 2018, 10, 30265-30272.
(29) Han, X.; Zhang, J.; Huang, J.; Wu, X.; Yuan, D.; Liu, Y.; Cui, Y.,
Chiral induction in covalent organic frameworks. Nat. Commun. 2018, 9,
1294.
(30) Sharma, A.; Malani, A.; Medhekar, N. V.; Babarao, R., CO2
adsorption and separation in covalent organic frameworks with interlayer
slipping. CrystEngComm 2017, 19, 6950-6963.
(31) Mendoza-Cortes, J. L.; Pascal, T. A.; Goddard, W. A., 3rd, Design
of covalent organic frameworks for methane storage. J Phys Chem A
2011, 115, 13852-13857.
(32) Zeng, Y.; Zou, R.; Zhao, Y., Covalent organic frameworks for CO2
capture. Adv. Mater. 2016, 28, 2855-2873.
(33) Lin, C. Y.; Zhang, L.; Zhao, Z.; Xia, Z., Design principles for
covalent organic frameworks as efficient electrocatalysts in clean energy
conversion and green oxidizer production. Adv. Mater. 2017, 29.
(34) Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang,
Z.; Zhao, M.; Tan, C.; Yang, N.; Shao, F.; Han, Y.; Zhang, H., Ultrathin
two-dimensional covalent organic framework nanosheets: preparation and
application in highly sensitive and selective DNA detection. J. Am. Chem.
Soc. 2017, 139, 8698-8704.
(35) Li, G.; Zhang, K.; Tsuru, T., Two-dimensional covalent organic
framework (COF) membranes fabricated via the assembly of exfoliated
COF nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 8433-8436.
(36) Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.;
Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R., Chemical sensing in
two dimensional porous covalent organic nanosheets. Chem Sci 2015, 6,
3931-3939.
(37) Wang, S.; Wang, Q.; Shao, P.; Han, Y.; Gao, X.; Ma, L.; Yuan, S.;
Ma, X.; Zhou, J.; Feng, X.; Wang, B., Exfoliation of covalent organic
frameworks into few-layer redox-active nanosheets as cathode materials
for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258-4261.
(38) Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S.
M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R., Chemically
stable multilayered covalent organic nanosheets from covalent organic
frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135,
17853-17861.
(39) Feldblyum, J. I.; McCreery, C. H.; Andrews, S. C.; Kurosawa, T.;
Santos, E. J.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z., Few-layer,
large-area, 2D covalent organic framework semiconductor thin films.
Chem. Commun. 2015, 51, 13894-13897.
REFERENCES
(1) Côte, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A.
J.; Yaghi, O. M., Porous, crystalline, covalent organic frameworks.
Science 2005, 310, 1166-1170.
(2) Yang, S.-T.; Kim, J.; Cho, H.-Y.; Kim, S.; Ahn, W.-S., Facile
synthesis of covalent organic frameworks COF-1 and COF-5 by
sonochemical method. RSC Adv. 2012, 2, 10179-10181.
(3) Côte, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O.
M., Reticular synthesis of microporous and mesoporous 2D covalent
organic frameworks. J. Am. Chem. Soc. 2007, 129, 12914-12915.
(4) Furukawa, H.; Yaghi, O. M., Storage of hydrogen, methane, and
carbon dioxide in highly porous covalent organic frameworks for clean
energy applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.
(5) Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A., 3rd,
Covalent organic frameworks as exceptional hydrogen storage materials.
J. Am. Chem. Soc. 2008, 130, 11580-11581.
(6) Dogru, M.; Sonnauer, A.; Gavryushin, A.; Knochel, P.; Bein, T., A
covalent organic framework with 4 nm open pores. Chem. Commun. 2011,
47, 1707-1709.
(7) Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.;
Schuster, J.; Linke, S.; Doblinger, M.; Feldmann, J.; Knochel, P.; Bein, T.,
Oriented thin films of a benzodithiophene covalent organic framework.
ACS Nano 2014, 8, 4042-4052.
(8) Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser,
M.; Medina, D. D.; Dogru, M.; Lobermann, F.; Trauner, D.; Hartschuh,
A.; Bein, T., Extraction of photogenerated electrons and holes from a
covalent organic framework integrated heterojunction. J. Am. Chem. Soc.
2014, 136, 17802-17807.
(9) Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D., Highly
emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138,
5797-5800.
(10) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O'Keeffe,
M.; Yaghi, O. M., A crystalline imine-linked 3-D porous covalent organic
framework. J. Am. Chem. Soc. 2009, 131, 4570-4571.
(11) Dalapati, S.; Addicoat, M.; Jin, S.; Sakurai, T.; Gao, J.; Xu, H.;
Irle, S.; Seki, S.; Jiang, D., Rational design of crystalline
supermicroporous covalent organic frameworks with triangular topologies.
Nat. Commun. 2015, 6, 7786.
(12) Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T., Spectrally
switchable photodetection with near-infrared-absorbing covalent organic
frameworks. J. Am. Chem. Soc. 2017, 139, 12035-12042.
(13) Keller, N.; Bessinger, D.; Reuter, S.; Calik, M.; Ascherl, L.;
Hanusch, F. C.; Auras, F.; Bein, T., Oligothiophene-bridged conjugated
covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8194-8199.
(14) Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D., An
azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135,
17310-17313.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.;
Ochsenfeld, C.; Lotsch, B. V.,
framework platform for visible light-induced hydrogen generation. Nat.
Commun. 2015, 6, 8508.
A tunable azine covalent organic
(16) Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.;
Qiu, S.; Yan, Y., Designed synthesis of large-pore crystalline polyimide
covalent organic frameworks. Nat. Commun. 2014, 5, 4503.
(17) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.;
Guo, H.; Qiu, S.; Yan, Y., 3D porous crystalline polyimide covalent
organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352-
8355.
(18) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.;
Yaghi, O. M., Crystalline covalent organic frameworks with hydrazone
linkages. J. Am. Chem. Soc. 2011, 133, 11478-11481.
(19) Bunck, D. N.; Dichtel, W. R., Bulk synthesis of exfoliated two-
dimensional polymers using hydrazone-linked covalent organic
frameworks. J. Am. Chem. Soc. 2013, 135, 14952-14955.
(20) Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V., A hydrazone-
based covalent organic framework for photocatalytic hydrogen
production. Chem. Sci. 2014, 5, 2789-2793.
(40) Xu, H.; Gao, J.; Jiang, D., Stable, crystalline, porous, covalent
organic frameworks as a platform for chiral organocatalysts. Nat. Chem.
2015, 7, 905-912.
(41) Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.;
Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K.
W.; Auras, F.; Bein, T., Molecular docking sites designed for the
11
ACS Paragon Plus Environment