3580
K. Ghosh, S. Adhikari / Tetrahedron Letters 47 (2006) 3577–3581
OR
O
OR
O
OR
O
O
O
O
O
O
NH
HN
NH
HN
NH
HN
O
N
N
N
N
HO
N
N
HO
OH
HO
HO
OH
O
O
O
O
O
O
O
O
O
HO
HO
HO
N
N
N
N
N
N
6
4
5
R = C8H17
Figure 6. Possible hydrogen bonding structures of 1 with rac-malic acid.
efficiency (/Q)12 follows the order of D-(À)-tartaric acid
(0.92) > rac-malic acid (0.87) > succinic acid (0.53),
reflecting the stabilities of the complexes (see the binding
constant values in Table 1). In the case of D-(À)-tartaric
acid, an additional peak at 453 nm along with monomer
emission at 377 nm was noticed due to excimer forma-
tion. The excimer emission resulted from the intramole-
cular excimer, rather than intermolecularly, as indicated
by the dilution experiments at different concentrations in
which the intensities of the ratio of excimer to monomer
emission changed gradually (Fig. 5). The formation of
this excimer in the presence of D-(À)-tartaric acid could
be attributed to the tartaric acid templated hydrogen
bond induced organization of the quinoline moieties.
Such excimer formation was not observed in the case
of succinic acid due to the lack of –OH groups which
are necessary to bring closer together the pendant quin-
oline groups of the binding arms via hydrogen bond
formation. This was confirmed using rac-malic acid
where the excimer emission was observed (Fig. 4) due
to the possibility of hydrogen bonding structure 4 which
may remain in equilibrium with 5 and 6 (Fig. 6). It is,
therefore, worth noting that the conformation of 1
was changed substantially only on binding with hydroxy-
dicarboxylic acids rather than with a dicarboxylic acid
of the same chain length.
References and notes
1. (a) Chemosensors of ion and Molecule Recognition; Des-
vergne, J. P., Czarnik, A. W., Eds.; NATO ASI Series;
Kluwer Academic: Dordrecht, 1997; Vol. 492; (b) De
Silva, A. P.; Gunaraine, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice,
T. E. Chem. Rev. 1997, 97, 1515; (c) Pfeffer, F. M.;
Gunnlaugsson, T.; Jensen, P.; Kruger, P. E. Org. Lett.
2005, 7, 5357, and references cited therein.
2. (a) Aoki, I.; Harada, T.; Sakaki, T.; Kawahara, Y.;
Shinkai, S. J. Chem. Soc., Chem. Commun. 1992, 1341;
(b) Liao, J.-H.; Chen, C.-T.; Fang, J.-M. Org. Lett. 2002,
4, 561; (c) Bai, Y.; Zhang, B.-G.; Xu, J.; Duan, C.-Y.;
Dang, D.-B.; Liu, D.-J.; Meng, Q.-J. New J. Chem. 2005,
29, 777; (d) Nishizawa, S.; Kaned, H.; Uchida, T.;
Teramae, N. J. Chem. Soc., Perkin Trans. 2 1998,
2325.
3. Styrer, L. Biochemistry, 3rd ed.; Freeman: New York,
1988; p 188; pp 373–394; p 376; pp 575–625.
4. (a) Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org. Chem.
2000, 65, 1907; (b) Yang, D.; Li, X.; Fan, Y.-F.; Zhang,
D.-W. J. Am. Chem. Soc. 2005, 127, 7996, and references
cited therein.
5. (a) Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-
Kohn, G.; James, T. D. J. Am. Chem. Soc. 2004, 126,
16179; (b) Goswami, S.; Ghosh, K.; Mukherjee, R.
Tetrahedron 2001, 57, 4987; (c) Hernandez, J. V.; Almaraz,
M.; Raposo, C.; Martin, M.; Lithgow, A.; Crego, M.;
Cabellero, C.; Moran, J. R. Tetrahedron Lett. 1998, 39,
7401.
6. (a) Garcia-Tellado, F.; Albert, J.; Hamilton, A. D. J.
Chem. Soc., Chem. Commun. 1991, 1761; (b) Kuroda, Y.;
Kato, Y.; Ito, M.; Hasegawa, J.; Ogoshi, H. J. Am. Chem.
Soc. 1994, 116, 10338; (c) Lavigne, J. J.; Anslyn, E. V.
Angew. Chem., Int. Ed. 1999, 38, 3666.
In pursuit of a fluorescent sensor we have demonstrated
that hydrogen bond-mediated complexation of tartaric
acid with 1 results in monomer emission quenching fol-
lowed by intramolecular excimer emission. This excimer
emission is moderate and convenient for practical use to
distinguish tartaric acid from its nonhydroxy analogue
succinic acid. Further study on this subject is underway
in our laboratory.
7. (a) Xu, K.-X.; He, Y.-B.; Qin, H.-J.; Qing, G.-Y.; Liu,
S.-Y. Tetrahedron 2005, 16, 3042; (b) Zhao, J.; James,
T. D. Chem. Commun. 2005, 1889.
8. (a) Ghosh, K.; Masanta, G. Supramol. Chem. 2005, 17,
331; (b) Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org.
Chem. 2000, 65, 1907–5504.
Acknowledgements
9. Receptor 1: Mp 110–111 ꢁC, 1H NMR (CDCl3, 400
MHz): d 8.96 (s, 2H, –NHCO–), 8.95 (d, 2H, J = 8 Hz),
8.26 (d, 2H, J = 8 Hz), 8.19 (s, 1H), 8.12 (d, 2H, J = 8 Hz),
7.71 (t, 4H, J = 8 Hz), 7.42 (m, 2H), 7.37–7.33 (m, 6H),
We thank CSIR [01(1922)/04/EMR-II], New Delhi,
India, for financial support and DST-FIST, for provid-
ing the facilities in the Department.