ACS Catalysis
Page 6 of 8
Lett. 2012, 14, 4358−4361. (b) Ding, R.; Zhang, Q.-C.; Xu, Y.-H.;
Loh, T.-P. Preparation of Highly Substituted (β-
Acylamino)acrylates via Iron-Catalyzed Alkoxycarbonylation of
N-Vinylacetamides with Carbazates. Chem. Commun. 2014, 50,
11661−11664.
1987, 331, 379−385. (b) Kondo, T.; Okada, T.; Mitsudo, T.-a.
[PPN][Ru3H(CO)11]/PCy3-Catalyzed Direct Addition of Formyl
Compounds to Alkenes. Organometallics 1999, 18, 4123−4127. (c)
Ko, S.; Han, H.; Chang, S. Ru-Catalyzed Hydroamidation of
Alkenes and Cooperative Aminocarboxylation Procedure with
Chelating Formamide. Org. Lett. 2003, 5, 2687−2690. (d) Nakao,
Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. Hydrocarbamoylation of
Unsaturated Bonds by Nickel/Lewis-Acid Catalysis. J. Am. Chem.
Soc. 2009, 131, 5070−5071. (e) Fujihara, T.; Katafuchi, Y.; Iwai, T.;
Terao, J.; Tsuji, Y. Palladium-Catalyzed Intermolecular Addition
of Formamides to Alkynes. J. Am. Chem. Soc. 2010, 132,
2094−2098. (f) Miyazaki, Y.; Yamada, Y.; Nakao, Y.; Hiyama, T.
Regioselective Hydrocarbamoylation of 1-Alkenes. Chem. Lett.
2012, 41, 298−300. (g) Li, B.; Park, Y.; Chang, S. Regiodivergent
Access to Five- and Six-Membered Benzo-Fused Lactams: Ru-
Catalyzed Olefin Hydrocarbamoylation. J. Am. Chem. Soc. 2014,
136, 1125−1131.
(14) (a) Yang, X.-H.; Wei, W.-T.; Li, H.-B.; Song, R.-J.; Li, J.-H.
Oxidative Coupling of Alkenes with Amides Using Peroxides:
Selective Amide C(sp3)−H versus C(sp2)−H Functionalization.
Chem. Commun. 2014, 50, 12867−12869. (b) Cheng, J.-K.; Shen, L.;
Wu, L.-H.; Hu, X.-H.; Loh, T.-P. Iron-Catalyzed Peroxidation-
Carbamoylation of Alkenes with Hydroperoxides and
Formamides via Formyl C(sp2)−H Functionalization. Chem.
Commun. 2017, 53, 12830−12833.
(15) (a) Seebach, D.; Matthews, J. L. β-Peptides: A Surprise at
Every Turn. Chem. Commun. 1997, 2015−2022. (b) Cheng, R. P.;
Gellman, S. H.; DeGrado, W. F. β-Peptides: From Structure to
Function. Chem. Rev. 2001, 101, 3219−3232.
(16) (a) Takahashi, T.; Hirokami, S.-i.; Nagata, M.
Photochemistry of 5-Methylpyrimidin-4-ones in Acetic Acid
Solution: Thermal Rearrangements of Dewar Pyrimidinones and
4-Acetoxyazetidin-2-ones. J. Chem. Soc., Perkin Trans. 1 1988,
2653−2662. (b) Jeong, J. U.; Chen, X.; Rahman, A.; Yamashita, D.
S.; Luengo, J. I. An Efficient Synthesis of 3-Substituted 3H-
Pyrimidin-4-ones. Org. Lett. 2004, 6, 1013−1016.
(17) Hesp, K. D.; Bergman, R. G.; Ellman, J. A. Expedient
Synthesis of N-Acyl Anthranilamides and β-Enamine Amides by
the Rh(III)-Catalyzed Amidation of Aryl and Vinyl C−H Bonds
with Isocyanates. J. Am. Chem. Soc. 2011, 133, 11430−11433.
(18) Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. Ir(III)-
Catalyzed Mild C−H Amidation of Arenes and Alkenes: An
Efficient Usage of Acyl Azides as the Nitrogen Source. J. Am. Chem.
Soc. 2013, 135, 12861−12868.
(19) Liu, Y.; Xie, F.; Jia, A.-Q.; Li, X. Cp*Co(III)-Catalyzed
Amidation of Olefinic and Aryl C−H Bonds: Highly Selective
Synthesis of Enamides and Pyrimidones. Chem. Commun. 2018, 54,
4345−4348.
(20) Xiong, Z.; Liang, D.; Luo, S. Palladium-Catalyzed β-
Selective C(sp2)−H Carboxamidation of Enamides by Isocyanide
Insertion: Synthesis of N-Acyl Enamine Amides. Org. Chem. Front.
2017, 4, 1103−1106.
(21) (a) Bagli, J.; Bogri, T.; Palameta, B.; Rakhit, S.; Peseckis, S.;
McQuillan, J.; Lee, D. K. H. Chemistry and Positive Inotropic
Effect of Pelrinone and Related Derivatives. A Novel Class of 2-
Methylpyrimidones as Inotropic Agents. J. Med. Chem. 1988, 31,
814−823. (b) Parker, W. B. Enzymology of Purine and Pyrimidine
Antimetabolites Used in the Treatment of Cancer. Chem. Rev.
2009, 109, 2880−2893.
1
2
3
4
5
6
7
8
(10) (a) Feng, C.; Loh, T.-P. Copper-Catalyzed Olefinic
Trifluoromethylation of Enamides at Room Temperature. Chem.
Sci. 2012, 3, 3458−3462. (b) Liu, Y.; Liu, Z.; Zhang, Y.; Xiong, C.
Manganese(III) Acetylacetonate-Mediated Phosphorylation of
Enamides at Room Temperature. Adv. Synth. Catal. 2018, 360,
3492−3496.
(11) For reviews on direct oxidation of hydrocarbons, see: (a) Li,
C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C
Bond Formations beyond Functional Group Transformations.
Acc. Chem. Res. 2009, 42, 335−344. (b) Yoo, W.-J.; Li, C.-J. Cross-
Dehydrogenative Coupling Reactions of sp3-Hybridized C−H
Bonds. Top. Curr. Chem. 2009, 292, 281−302. (c) Newhouse, T.;
Baran, P. S. If C−H Bonds Could Talk: Selective C–H Bond
Oxidation. Angew. Chem., Int. Ed. 2011, 50, 3362−3374. (d) Yeung,
C. S.; Dong, V. M. Catalytic Dehydrogenative Cross-Coupling:
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Forming
Carbon−Carbon
Bonds
by
Oxidizing
Two
Carbon−Hydrogen Bonds. Chem. Rev. 2011, 111, 1215−1292. (e) Liu,
C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative
Coupling between Two Hydrocarbons: An Update of Recent C−H
Functionalizations. Chem. Rev. 2015, 115, 12138−12204. (f) Yi, H.;
Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A.
Recent Advances in Radical C−H Activation/Radical Cross-
Coupling. Chem. Rev. 2017, 117, 9016−9085.
(12) (a) Schnyder, A.; Beller, M.; Mehltretter, G.; Nsenda, T.;
Studer, M.; Indolese, A. F. Synthesis of Primary Aromatic Amides
by Aminocarbonylation of Aryl Halides Using Formamide as an
Ammonia Synthon. J. Org. Chem. 2001, 66, 4311−4315. (b) Hosoi,
K.; Nozaki, K.; Hiyama, T. Carbon Monoxide Free
Aminocarbonylation of Aryl and Alkenyl Iodides Using DMF as an
Amide Source. Org. Lett. 2002, 4, 2849−2851. (c) Ju, J.; Jeong, M.;
Moon, J.; Jung, H. M.; Lee, S. Aminocarbonylation of Aryl Halides
Using a Nickel Phosphite Catalytic System. Org. Lett. 2007, 9,
4615−4618. (d) Jo, Y.; Ju, J.; Choe, J.; Song, K. H.; Lee, S. The Scope
and Limitation of Nickel-Catalyzed Aminocarbonylation of Aryl
Bromides from Formamide Derivatives. J. Org. Chem. 2009, 74,
6358−6361. (e) Wang, J.; Hou, J.-T.; Wen, J.; Zhang, J.; Yu, X.-Q.
Iron-Catalyzed Direct Amination of Azoles Using Formamides or
Amines as Nitrogen Sources in Air. Chem. Commun. 2011, 47,
3652−3654. (f) He, T.; Li, H.; Li, P.; Wang, L. Direct Amidation of
Azoles with Formamides via Metal-Free C−H Activation in the
Presence of tert-Butyl Perbenzoate. Chem. Commun. 2011, 47,
8946−8948. (g) Sawant, D. N.; Wagh, Y. S.; Tambade, P. J.; Bhatte,
K. D.; Bhanage, B. M. Cyanides-Free Cyanation of Aryl Halides
using Formamide. Adv. Synth. Catal. 2011, 353, 781−787. (h)
Sawant, D. N.; Wagh, Y. S.; Bhatte, K. D.; Bhanage, B. M.
Palladium-Catalyzed
Carbon-Monoxide-Free
Aminocarbonylation of Aryl Halides Using N-Substituted
Formamides as an Amide Source. J. Org. Chem. 2011, 76,
5489−5494. (i) Jiang, H.; Lin, A.; Zhu, C.; Cheng, Y. Copper-
Catalyzed C−N Bond Formation through C−H/N−H Activation: A
Novel Approach to the Synthesis of Multisubstituted Ureas.
Chem. Commun. 2013, 49, 819−821. (j) Li, D.; Wang, M.; Liu, J.;
Zhao, Q.; Wang, L. Cu(II)-Catalyzed Decarboxylative Acylation of
Acyl C−H of Formamides with α-Oxocarboxylic Acids Leading to
α-Ketoamides. Chem. Commun. 2013, 49, 3640−3642. (k) Yao, B.;
Deng, C.-L.; Liu, Y.; Tang, R.-Y.; Zhang, X.-G.; Li, J.-H. Palladium-
Catalyzed Oxidative Carbamoylation of Isoquinoline N-Oxides
with Formylamides by Means of Dual C–H Oxidative Coupling.
Chem. Commun. 2015, 51, 4097−4100.
(22) (a) Jessen, H. J.; Gademann, K. 4-Hydroxy-2-pyridone
Alkaloids: Structures and Synthetic Approaches. Nat. Prod. Rep.
2010, 27, 1168−1185. (b) Patel, B. H.; Mason, A. M.; Barrett, A. G. M.
Synthesis
of
6-Substituted-4-Hydroxy-2-pyridinones
via
Intramolecular Ketene Trapping of Functionalized Enamine-
Dioxinones Org. Lett. 2011, 13, 5156−5159.
(23) (a) Zhang, Y.; Li, C.-J. Highly Efficient Direct Alkylation of
(13) (a) Tsuji, Y.; Yoshii, S.; Ohsumi, T.; Kondo, T.; Watanabe,
Y. Dodecacarbonyltriruthenium Catalyzed One-to-One Addition
of N-Substituted Formamides to Olefins. J. Organomet. Chem.
Activated Methylene by Cycloalkanes. Eur. J. Org. Chem. 2007,
ACS Paragon Plus Environment