Page 3 of 9
Journal Name
Journal of Materials Chemistry A
COMMUNICATION
DOI: 10.1039/C5TA03093E
3
1 32 33
1
2
.
.
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J.
Heeger and G. C. Bazan, Nature materials, 2007, 6, 497ꢀ500.
J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R.
H. Friend, S. C. Moratti and A. B. Holmes, Nature, 1995, 376,
procedures in previous reports
. The calculated charge
dissociation probabilities E,T) are 78%, 83% and 63% for the
devices of PffBT4Tꢀ2DT/TPCꢀPDI , PffBT4Tꢀ2DT/TPSiꢀPDI4
P
(
4
4
98ꢀ500.
and PffBT4Tꢀ2DT/TPGeꢀPDI respectively. This could be one
4
,
3
.
G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789ꢀ1791.
G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and
Y. Yang, Nature materials, 2005, 4, 864ꢀ868.
H.ꢀY. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L.
Yu, Y. Wu and G. Li, Nat Photon, 2009, 3, 649ꢀ653.
J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K.
Emery, C.ꢀC. Chen, J. Gao, G. Li and Y. Yang, Nature
communications, 2013, 4, 1446.
S. H. Liao, H. J. Jhuo, P. N. Yeh, Y. S. Cheng, Y. L. Li, Y. H.
Lee, S. Sharma and S. A. Chen, Scientific reports, 2014, 4, 6813.
Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H.
Ade and H. Yan, Nature communications, 2014, 5, 5293.
L. Zuo, C. C. Chueh, Y. X. Xu, K. S. Chen, Y. Zang, C. Z. Li, H.
Chen and A. K. Jen, Adv Mater, 2014, 26, 6778ꢀ6784.
S.ꢀY. Liu, C.ꢀH. Wu, C.ꢀZ. Li, S.ꢀQ. Liu, K.ꢀH. Wei, H.ꢀZ. Chen
and A. K. Y. Jen, Advanced Science, 2015, 2, n/aꢀn/a.
of the issues that caused the lower EQE of PffBT4Tꢀ
3
4, 35
2
DT/TPGeꢀPDI based PSCs
. All these results combined,
could explain why PffBT4Tꢀ2DT/TPCꢀPDI4 and PffBT4Tꢀ
DT/TPSiꢀPDI perform better than PffBT4Tꢀ2DT/TPGeꢀPDI4
4
4.
5
6
.
.
2
4
based PSCs.
In summary, a family of tetrahedron coreꢀbased 3Dꢀstructure
SM acceptors are synthesized and characterized. PSC devices
7
.
were fabricated achieving PCE up to 4.3% and an outstanding 8.
VOC of 0.96 V, which is much higher than that oc of the
corresponding polymer/fullerene devices. To understand why
TPCꢀPDI and TPGeꢀPDI based PSCs perform better than that
V
9
.
4
4
10.
1.
based on TPGeꢀPDI , XRD, AFM, light intensity dependence
4
1
J. Zhao, Y. Li, H. Lin, Y. Liu, K. Jiang, C. Mu, T. Ma, J. Y. Lin
Lai, H. Hu, D. Yu and H. Yan, Energy Environ. Sci., 2015, 8,
5
of the JSC and VOC, and photocurrent density versus effective
voltage experiments are carried out. The results of XRD and
20ꢀ525.
AFM measurements show that all these three SMs can form 12.
smooth films and relatively small feature sizes when blended
with PffBT4Tꢀ2DT. The calculated exciton germinate
recombination and bimolecular recombination results show that
bimolecular recombination of PffBT4Tꢀ2DT/TPCꢀPDI4 and
PffBT4Tꢀ2DT/TPSiꢀPDI4 is weaker than that of PffBT4Tꢀ
T. Earmme, Y. J. Hwang, N. M. Murari, S. Subramaniyan and S.
A. Jenekhe, Journal of the American Chemical Society, 2013, 135,
1
4960ꢀ14963.
1
1
3.
4.
K. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl and P.
Heremans, Nature communications, 2014, 5, 3406.
C. Mu, P. Liu, W. Ma, K. Jiang, J. Zhao, K. Zhang, Z. Chen, Z.
Wei, Y. Yi, J. Wang, S. Yang, F. Huang, A. Facchetti, H. Ade and
H. Yan, Advanced Materials, 2014, 26, 7224ꢀ7230.
A. a. F. Eftaiha, J.ꢀP. Sun, I. G. Hill and G. C. Welch, J. Mater.
Chem. A, 2014, 2, 1201ꢀ1213.
A. Sharenko, C. M. Proctor, T. S. van der Poll, Z. B. Henson, T.
Q. Nguyen and G. C. Bazan, Adv Mater, 2013, 25, 4403ꢀ4406.
Y. Zang, C. Z. Li, C. C. Chueh, S. T. Williams, W. Jiang, Z. H.
Wang, J. S. Yu and A. K. Jen, Adv Mater, 2014, 26, 5708ꢀ5714.
Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu and X. Zhan,
Adv Mater, 2015, 27, 1170ꢀ1174.
2
DT/TPGeꢀPDI4. These reasons combined provided
a
15.
6.
17.
reasonable explanation why PffBT4Tꢀ2DT/TPCꢀPDI4 and
PffBT4Tꢀ2DT/TPSiꢀPDI4 perform better than PffBT4Tꢀ
2
3
1
DT/TPGeꢀPDI . This work provides a new design strategy for
4
D structure electron acceptors enabling efficient nonꢀfullerene
1
1
8.
9.
PSCs.
Y. Lin, Z.ꢀG. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu and
X. Zhan, Energy Environ. Sci., 2015, 8, 610ꢀ616.
X. Zhang, C. Zhan and J. Yao, Chemistry of Materials, 2015, 27,
166ꢀ173.
Notes and references
a
Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9
20.
Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen 518057, China. E-mail: hyan@ust.hk
2
2
1.
2.
Z. Lu, B. Jiang, X. Zhang, A. Tang, L. Chen, C. Zhan and J. Yao,
Chemistry of Materials, 2014, 26, 2907ꢀ2914.
A. Sharenko, D. Gehrig, F. Laquai and T.ꢀQ. Nguyen, Chemistry
of Materials, 2014, 26, 4109ꢀ4118.
b
Department of Chemistry, The Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong.
c
Joint School of Sustainable Development and MOE Key Lab for Non-Equilibrium
Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi’an
23.
X. Zhang, Z. Lu, L. Ye, C. Zhan, J. Hou, S. Zhang, B. Jiang, Y.
Zhao, J. Huang, S. Zhang, Y. Liu, Q. Shi, Y. Liu and J. Yao, Adv
Mater, 2013, 25, 5791ꢀ5797.
X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M.
R. Wasielewski and S. R. Marder, Adv Mater, 2011, 23, 268ꢀ284.
C. Huang, S. Barlow and S. R. Marder, The Journal of organic
chemistry, 2011, 76, 2386ꢀ2407.
Y. Liu, C. Mu, K. Jiang, J. Zhao, Y. Li, L. Zhang, Z. Li, J. Y. Lai,
H. Hu, T. Ma, R. Hu, D. Yu, X. Huang, B. Z. Tang and H. Yan,
Adv Mater, 2015, 27, 1015ꢀ1020.
710049, P R China.
d
Institute of Optoelectronic Materials and Devices, State Key Laboratory of Luminescent
Materials and Devices, South China University of Technology, Guangzhou, 510640,
P.R.China.
2
2
2
4.
5.
6.
†
Electronic supplementary information (ESI) available: Materials and methods, See
DOI:
‡
These authors contributed equally.
2
7.
Q. Yan, Y. Zhou, Y.ꢀQ. Zheng, J. Pei and D. Zhao, Chemical
Science, 2013, 4, 4389.
Acknowledgements
The work described in this paper was partially supported by the National 28.
Y. Lin, Y. Wang, J. Wang, J. Hou, Y. Li, D. Zhu and X. Zhan,
Adv Mater, 2014, 26, 5137ꢀ5142.
Z. Chen, P. Cai, J. Chen, X. Liu, L. Zhang, L. Lan, J. Peng, Y. Ma
and Y. Cao, Adv Mater, 2014, 26, 2586ꢀ2591.
Basic Research Program of China (973 Program; 2013CB834701), the
2
9.
Hong Kong Innovation and Technology Commission (ITS/354/12), the
Hong Kong Research Grants Council (T23ꢀ407/13 N, N_HKUST623/13, 30.
and 606012) and the National Science Foundation of China (#21374090).
L. Lu, T. Xu, W. Chen, E. S. Landry and L. Yu, Nature
Photonics, 2014, 8, 716ꢀ722.
L. Ye, W. Jiang, W. Zhao, S. Zhang, D. Qian, Z. Wang and J.
Hou, Small, 2014, 10, 4658ꢀ4663.
3
1.
3
2.
V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, C. Melzer, B.
deꢁBoer, J. K. J. vanꢁDuren and R. A. J. Janssen, Advanced
Functional Materials, 2005, 15, 795ꢀ801.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3