Recognition of Cations by Self-Assembled Monolayers
J. Phys. Chem. B, Vol. 103, No. 31, 1999 6519
TABLE 1: Association Constants of Metal Ions with
Different Crown Ether SAMs Determined from Changes of
the Charge-Transfer Resistancea
Kc
CML Θ )
1 + Kc
(3)
where K is the association constant and c is the concentration
of metal ions in solution. Linearization of the Langmuir isotherm
gives
18-crown-6
18-crown-6 15-crown-5 12-crown-4
(2) (3) (4)
(1)
i+
KL
100
50 30 90
+
KNa
KK
1000 (1080)
11000 (10400)
4600
230
8500
1500
60
27100
770
15800
500
Θ
1 - Θ
) Kc
(4)
+
+
KCs
50
Consequently, RCT should be multiplied by (1 - Θ) in order to
obtain the desired relation between the charge-transfer resistance
and the fraction of occupied binding sites.
a Association constants determined from capacitance changes are
given in parentheses. The relative error in the association constants is
10%.
RCT(1 - Θ) ) R0
Combination of eqs 4 and 5 gives
(5)
influences the dielectric constant of the layer, resulting in an
increase of the monolayer capacitance. The magnitude of the
capacitive response is related to the chemical structure of the
used adsorbates. Longer adsorbates that have an alkyl spacer
to attach the ionophore to the gold substrate show a smaller
response due to the invariant capacitance of the spacer.
Comparison of capacitive and resistive changes of the crown
ether SAM caused by the binding of metal ions unraveled the
origin of latter response. Both responses can now be used to
determine the association constants of the monolayer with metal
ions. However, the magnitude of the resistance change and its
linear dependency on the metal concentration in the solution
enables its detection over a much wider range compared to the
capacitive detection.
R
Kc ) CT - 1
(6)
R0
where R0 is the charge-transfer resistance of the monolayer in
the absence of metal ions. The linear relation between RCT and
c in eq 6 increases the concentration window in which the metal
ion can be detected compared to the capacitive detection. The
monolayer capacitance is changing for metal ion concentrations
1
between /10Kass and 10/Kass, whereas the charge-transfer
1
resistance is responding at every concentration above /10Kass
.
However, we have found that at very high guest concentrations,
the resistance response is deviating from eq 6, until it eventually
reaches a maximum value.11 We attribute this to the fact that
RCT cannot increase to infinite values.
References and Notes
(1) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
(2) Ulman, A. An Introduction into Ultrathin Organic Films; Academic
Press: San Diego, CA, 1991. (b) Finklea, H. O. In Electroanalytical
Chemistry; Bard, A. J., Rubinstein, I., Eds.; Marcel Dekker: New York,
1996; Vol. 19. (c) Hickman, J. J.; Ofer, D.; Laibinis, P. E.; Whitesides, G.
M.; Wrighton, M. S. Science 1991, 252, 688. (d) Roscoe, S. B.; Kakkar,
A. K.; Marks, T. J.; Malik, A.; Durbin, M. K.; Lin, W.; Wong, G. K.;
Dutta, P. Langmuir 1996, 12, 4218. (e) Yang, X.; McBranch, D.; Swanson,
B.; Li, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 538. (f) Doron, A.;
Portnoy, M.; Lion-Dagan, M.; Katz, E.; Willner, I. J. Am. Chem. Soc. 1996,
118, 8937.
(3) Thoden van Velzen, E. U.; Engbersen, J. F. J.; de Lange, P. J.;
Mahy, J. W. G.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 6853. (b)
Huisman, B.-H.; Thoden van Velzen, E. U.; van Veggel, F. C. J. M.;
Engbersen, J. F. J.; Reinhoudt, D. N. Tetrahedron Lett. 1995, 36, 3273.
(c) Beulen, M. W. J.; Huisman, B.-H.; van der Heijden, P. A.; van Veggel,
F. C. J. M.; Simons, M. G.; Biemond, E. M. E. F.; de Lange, P. J.;
Reinhoudt, D. N. Langmuir 1996, 12, 6170. (d) Scho¨nherr, H.; Vancso, G.
J.; Huisman, B.-H.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Langmuir
1997, 13, 1567.
(4) Sun, L.; Kepley, L. J.; Crooks, R. M. Langmuir 1992, 8, 2101. (b)
Xu, C.; Sun, L.; Kepley, L. J.; Crooks, R. M. Anal. Chem. 1993, 65, 2102.
(5) Sun, L.; Crooks, R. M.; Ricco, A. J. Langmuir 1993, 9, 1775. (b)
Roush, J. A.; Tacker, D. L.; Anderson, M. R. Langmuir 1994, 10, 1642.
(c) Schierbaum, K.-D.; Weiss, T.; Thoden van Velzen, E. U.; Engbersen,
J. F. J.; Reinhoudt, D. N.; Go¨pel, W. Science 1994, 265, 1413. (d) Dermody,
D. L.; Crooks, R. M.; Kim, T. J. Am. Chem. Soc. 1996, 118, 11912. (e)
Sastry, M.; Patil, V.; Mayya, K. S. J. Phys. Chem. B 1997, 101, 1167.
(6) Spinke, J.; Liley, M.; Schmitt, F.-J.; Guder, H.-J.; Angermaier, L.;
Knoll, W. J. Chem. Phys. 1993, 99, 7012. (b) Simpson, T. R. E.; Cook, M.
J.; Petty, M. C.; Thorpe, S. C.; Russel, D. A. Analyst 1996, 121, 1501. (c)
Huisman, B.-H.; Kooyman, R. P. H.; van Veggel, F. C. J. M.; Reinhoudt,
D. N. AdV. Mater. 1996, 8, 561. (d) Friggeri, A.; van Veggel, F. C. J. M.;
Reinhoudt, D. N.; Kooyman, R. P. H. Langmuir 1998, 14, 5457.
(7) Motesharei, K.; Myles, D. C. J. Am. Chem. Soc. 1998, 120, 7328.
(8) Rubinstein, I.; Steinberg, S.; Tor, Y.; Shanzer, A.; Sagiv, J. Nature
1988, 332, 426. (b) Steinberg, S.; Tor, Y.; Sabatani, E.; Rubinstein, I. J.
Am. Chem. Soc. 1991, 113, 5176. (c) Steinberg, S.; Rubinstein, I. Langmuir
1992, 8, 1183. (d) Turyan, I.; Mandler, D. Anal. Chem. 1994, 66, 58. (e)
Rojas, M. T.; Ko¨niger, R.; Stoddart, J. F.; Kaifer, A. E. J. Am. Chem. Soc.
1995, 117, 336. (f) Turyan, I.; Mandler, D. Anal. Chem. 1997, 69, 894.
(9) Gafni, Y.; Weizman, H.; Libman, J.; Shanzer, A.; Rubinstein, I.
Chem.sEur. J. 1996, 2, 759.
The experimentally derived relation between the association
constant and the charge-transfer resistance of the monolayer as
given in eq 6 was used to calculate the association constants of
alkali metal ions with several crown ether monolayers (see Table
1). Since the titration curves deviate from linearity at very high
metal concentrations, only the concentration range where eq 6
is valid was used for the determination of the association
constants. A striking feature of the determined association
constants is that they are higher than those reported for the
complexes in aqueous solutions.22 A much better resemblance
is found to the corresponding association constants of the
complexes in less polar solvents such as methanol. This indicates
that the environment inside the monolayer has a lower polarity
than the contacting aqueous solution.23 In the two cases where
the association constants were determined by capacitive and
resistive measurements, the obtained values are identical within
the experimental error, which confirms the validity of eq 6.
Besides this, both 18-crown-6 adsorbates form monolayers that
+
+
+
+
exhibit similar selectivities: KK > KCs > KNa > KLi . Also,
monolayers of the 15-crown-5 adsorbate have the highest affinity
for potassium ions. The other alkali metal ions have association
constants that are almost 2 orders of magnitude smaller.
Monolayers of adsorbates with the smallest crown ether ring
exhibit sodium selectivity. These remarkable selectivities of the
+
+
+
+
12-crown-4 (KNa /KK ) 30) and 15-crown-5 (KK /KNa ) 450)
SAMs have been attributed to the formation of sandwich
complexes.11 The fact that in these cases the metal ions are
bound in a sandwich complex does not contradict the require-
ments of the Langmuir isotherm (i.e., independence of binding
sites), since the two crown ethers involved in the complexation
can be regarded as being one binding site.
Conclusions
Self-assembled monolayers of crown ether adsorbates are able
to bind cations from aqueous solutions. The binding of ions
(10) Stora, T.; Hovius, R.; Dienes, Z.; Pachoud, M.; Vogel, H. Langmuir
1997, 13, 5211.