Angewandte
Chemie
[3] a) K. Binnemans, Y. G. Galyametdinov, R. V. Deun, D. W.
samples of 3c upon the phase transition
observed during the heating process
from the crystalline phase (Figures 6c
and d). During the cooling process from
the isotropic phase, the intensity grad-
ually increased in the liquid-crystalline
and the supercooled liquid-crystalline
phases in both samples. In line with the
intensity of the EPR signal being pro-
portional to the c value, a microscopic
increase in the cpara value was indeed
observed upon the phase transition
from the crystalline phase to the nem-
atic or cholesteric phase.
Bruce, S. R. Collinson, A. P. Polishchuk, I. Bikchantaev, W.
Haase, A. V. Prosvirin, L. Tinchurina, I. Litvinov, A. Gubajdul-
lin, A. Rakhmatullin, K. Uytterhoeven, L. V. Meervelt, J. Am.
Chem. Soc. 2000, 122, 4335 – 4344; b) Y. Galyametdinov, M. A.
Athanassopoulou, K. Griesar, O. Kharitonova, E. A. S. Busta-
mante, L. Tinchurina, I. Ovchinnikov, W. Haase, Chem. Mater.
1996, 8, 922 – 926; c) K. Griesar, Y. Galyametdinov, M. Atha-
nassopoulou, I. Ovchinnikov, W. Haase, Adv. Mater. 1994, 6,
381– 384.
[4] a) I. Dierking, Texture of Liquid Crystals, Wiley-VCH, Wein-
heim, 003; b) S. T. Lagerwall, Ferroelectric and Antiferroelectric
Liquid Crystals, Wiley-VCH, Weinheim, 999; c) D. Demus, J. W.
Goodby, G. W. Gray, H. W. Spiess, V. Vill, Handbook of Liquid
Crystals, Vol. 1–4, Wiley-VCH, Weinheim, 1998.
[5] a) S. Nakatsuji, M. Mizumoto, H. Ikemoto, H. Akutsu, J.
Yamada, Eur. J. Org. Chem. 2002, 1912 – 1918; b) J. Allgaier,
H. Finkelmann, Macromol. Chem. Phys. 1994, 195, 1017 – 1030;
c) M. Dvolaitzky, J. Billard, F. Poldy, Tetrahedron 1976, 32, 1835 –
1838; d) M. Dvolaitzky, J. Billard, F. Poldy, C. R. Hebd. Seances
Acad. Sci. Ser. C 1974, 279, 533 – 535.
[6] a) S. Shimono, R. Tamura, N. Ikuma, T. Takimoto, N. Kawame,
O. Tamada, N. Sakai, H. Matsuura, J. Yamauchi, J. Org. Chem.
2004, 69, 475 – 481; b) R. Tamura, S. Shimono, K. Fujita, K.
Hirao, Heterocycles 2001, 54, 217 – 224; c) R. Tamura, S. Susuki,
N. Azuma, A. Matsumoto, F. Toda, T. Takui, D. Shiomi, K. Itoh,
Mol. Cryst. Liq. Cryst. 1995, 271, 91– 96; d) R. Tamura, S.
Susuki, N. Azuma, A. Matsumoto, F. Toda, Y. Ishii, J. Org. Chem.
1995, 60, 6820 – 6825; e) R. Tamura, S. Susuki, N. Azuma, A.
Matsumoto, F. Toda, A. Kamimura, K. Hori, Angew. Chem.
1994, 106, 914 – 915; Angew. Chem. Int. Ed. Engl. 1994, 33, 878 –
880.
[7] a) N. Ikuma, R. Tamura, S. Shimono, N. Kawame, O. Tamada, N.
Sakai, J. Yamauchi, Y. Yamamoto, Mendeleev Commun. 2003,
109 – 111; b) J. Einhorn, C. Einhorn, F. Ratajczak, I. Gautier-
Luneau, J.-L. Pierre, J. Org. Chem. 1997, 62, 9385 – 9388; c) N.
Benfaremo, M. Steenbock, M. Klapper, K. Müllen, V. Enkel-
mann, K. Cabrera, Liebigs Ann. 1996, 1413 – 1415; d) J. F. W.
Keana, S. E. Seyedrezai, G. Gaughan, J. Org. Chem. 1983, 48,
2644 – 2647.
Scheme 2. Molecular
orientation of 3
approximately paral-
lel to the magnetic
field (H0).
We thus observed the microscopic
decrease in the g value as well as the
macro- and microscopic increases in the
cpara value upon the phase transition
from the crystalline phase of (Æ )-3c to
the liquid-crystalline phase during the heating process.
It is assumed that the molecular magnetic susceptibility
anisotropy (Dc), which results from the cooperation of the
paramagnetic and diamagnetic components originating from
the nitroxyl group and the benzene rings, respectively, is
responsible for the orientation of the bulk LC in the applied
magnetic field. As c (parallel) is surely larger than c
k
?
(perpendicular) for (Æ )-3c, the experimental magnetic sus-
ceptibility anisotropy Dcexp was determined to be + 0.47
10À4 emumolÀ1 according to Equation (1),[2a] in which the
3
2
ð1Þ
Dcexp
¼
ðcorderedÀcisotropic
Þ
experimental values of cordered = + 1.136 10À3 emumolÀ1 at
340 K (cooling process) and cisotropic = + 1.105
10À3 emumolÀ1 at 340 K (heating process) were used.
Thus, it has been shown that a chiral racemic nematic
phase is more suitable than a cholesteric phase with respect to
the orientation of the bulk LC by weak magnetic fields.
Alternatively, these paramagnetic LC substances may serve as
dopants to align diamagnetic mesophases by weak magnetic
fields, or as a real LC probe to investigate the dynamic
behavior of a given diamagnetic LC material by EPR
spectroscopy. Furthermore, if a paramagnetic chiral smectic
(SmC*) phase is available, the orientation of the ferroelectric
sample may also be controlled by application of weak
magnetic fields.[11]
[8] The X-ray crystallographic data were collected at 298 K on an
Enraf-Nonius Kappa CCD diffractometer. The crystal structure
was solved by direct methods and refined by full-matrix least
squares. All non-hydrogen atoms were refined anisotropically.
All of the crystallographic calculations were performed by using
the maXus software package.[12] Crystal data for (Æ )-2a:
C26H36NO3, Mr = 410.578, 0.26 0.20 0.16 mm3, monoclinic,
space group C2/c, a = 14.363(2), b = 15.1763(13), c =
22.269(4) , b = 99.155(7)8, V= 4792.5(12) 3, Z = 8, 1calcd
=
1.138 gcmÀ3
,
2qmax = 50.728, MoKa (l = 0.71073 ), m =
0.73 cmÀ1, f-w-scans, T= 298 K, 4403 independent reflections,
2133 observed reflections (I > 2.0s(I)), 295 refined parameters,
À3
R = 0.064, Rw = 0.166, D1max = 0.320 eÀ3, D1min = À0.341e
.
Crystal data for (2S,5S)-2a: C26H36NO3, Mr = 410.578, 0.31
0.21 0.09 mm , triclinic, space group P1, a = 6.3786(2), b =
Received: March 16, 2004 [Z460007]
3
¯
7.5419(3), c = 13.7089(9) , a = 98.448(2)8, b = 90.959(2)8, g =
Keywords: chirality · EPR spectroscopy · liquid crystals ·
magnetic properties · phase transitions
114.567(4)8, V= 591.06(5) 3, Z = 1, 1calcd = 1.154 gcmÀ3, 2qmax
=
.
54.968, MoKa(l = 0.71073 ), m = 0.74 cmÀ1
, f-w-scans, T=
298 K, 2611 independent reflections, 1396 observed reflections
(I > 2.0s(I)), 277 refined parameters, R = 0.058, Rw = 0.119,
À3
À3
D1max = 0.215 e
,
D1min = À0.258 e
. Crystal data for
[1] a) K. Griesar, W. Haase in Magnetic Properties of Organic
Molecules (Ed.: P. M. Lahti), Marcel Dekker, New York, 1999,
pp. 325 – 344; b) P. Kaszynski in Magnetic Properties of Organic
Molecules (Ed.: P. M. Lahti), Marcel Dekker, New York, 1999,
pp. 305 – 324; c) M. Marcos, J.-L Serrano, Adv. Mater. 1991, 3,
256 – 257.
(2S,5S)-3a: C33H40NO5, Mr = 530.685, 0.36 0.30 0.03 mm3,
monoclinic, space group P21, a = 7.1625(7), b = 9.696(2), c =
21.609(2) , b = 98.171(6)8, V= 1485.5(4) 3, Z = 2, 1calcd
=
m =
1.186 gcmÀ3
,
2qmax = 49.808,
MoKa(l = 0.71073 ),
0.79 cmÀ1, f-w-scans, T= 298 K, 2733 independent reflections,
1809 observed reflections (I > 2.0s(I)), 424 refined parameters,
[2] H. Müller, W. Haase, J. Phys. (Paris) 1983, 44, 1209 – 1213.
Angew. Chem. Int. Ed. 2004, 43, 3677 –3682
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3681