Communication
ChemComm
Tian, Angew. Chem., Int. Ed., 2013, 52, 4929; (d) N. Umiersky and
G. Manolikakes, Org. Lett., 2013, 15, 188; (e) S. Liang, R. Zhang, L. Xi,
S. Chen and X. Yu, J. Org. Chem., 2013, 78, 11874; ( f ) S. A.
Amelichev, L. S. Konstantinova, N. V. Obruchnikova, O. A. Rakitin
and C. W. Rees, Org. Lett., 2006, 8, 4529.
7 (a) L. Melzig, C. B. Rauhut, N. Naredi-Rainer and P. Knochel,
Chem. – Eur. J., 2011, 17, 5362; (b) J. R. Fotsing and K. Banert,
Synthesis, 2006, 261; (c) D. B. Werz, R. Gleiter and F. Rominger,
J. Org. Chem., 2004, 69, 2945; (d) D. B. Werz and R. Gleiter, J. Org.
Chem., 2003, 68, 9400; (e) F. D. Toste and I. W. J. Still, Tetrahedron
Lett., 1995, 36, 4361; ( f ) H. Maruyama, M. Shiozaki, S. Oida and
T. Hiraoka, Tetrahedron Lett., 1985, 26, 4521.
The use of 2-thiocyanatopyrroles paves the way for a novel,
fast and efficient entry to benzo[d]pyrrolo[2,1-b]thiazoles and
pyrrolo[2,1-b]thiazoles, respectively. Further studies to expand
this methodology to other heterocyclic scaffolds are ongoing.
This research was supported by the German Research Foun-
dation (DFG, Emmy Noether and Heisenberg Fellowships to
D.B.W.) and by the Fonds der Chemischen Industrie (PhD
Fellowship to M.P. and Dozentenstipendium to D.B.W.).
L.K.B.G. thanks the Studienstiftung des deutschen Volkes for
a PhD Fellowship.
8 (a) P. Stanetty, G. Hattinger, M. D. Mihovilovic and K. J. Mereiter,
J. Heterocycl. Chem., 2000, 37, 955; (b) J. Nakayama, A. Sakai,
S. Tokita and M. Hoshino, Heterocycles, 1984, 22, 27.
Notes and references
´
´
9 (a) J.-A. Garcıa-Lopez, M. Çetin and M. F. Greaney, Angew. Chem., Int.
Ed., 2015, 54, 2156; (b) D. Giallombardo, A. C. Nevin, W. Lewis,
C. C. Nawrat, R. R. A. Kitson and C. J. Moody, Tetrahedron, 2014,
70, 1283; (c) J. Zhao and R. C. Larock, J. Org. Chem., 2007, 72, 583;
(d) D. C. Rognessa and R. C. Larock, Tetrahedron Lett., 2009,
50, 4003; (e) J. Zhao and R. C. Larock, Org. Lett., 2005, 7, 4273;
( f ) D. Hong, Z. Chen, X. Lin and Y. Wang, Org. Lett., 2010, 12, 4608.
10 (a) C. Shao, Q. Zhang, G. Cheng, C. Cheng, X. Wang and Y. Hu, Eur.
J. Org. Chem., 2013, 6443; (b) K. Yoshimura, T. Oishi, K. Yamaguchi
and N. Mizuno, Chem. – Eur. J., 2011, 17, 3827; (c) E. B. Castillo-
Contreras and G. R. Dake, Org. Lett., 2014, 16, 1642; (d) M. Yoshida,
K. Saito, Y. Fujino and T. Doi, Chem. Commun., 2012, 48, 11796.
11 (a) D. Kundu, T. Chatterjee and B. C. Ranu, Adv. Synth. Catal., 2013,
355, 2285; (b) K. Radhakrishnan and C.-H. Lin, Synlett, 2005, 2179;
(c) P. Preedasuriyachai, P. Charoonniyomporn, O. Karoonnirun,
T. Thongpanchang and Y. Thebtaranonth, Tetrahedron Lett., 2004,
45, 1343.
1 (a) B. Stumpf, C. Eberle, M. Kaiser, R. Brun, R. L. Krauth-Siegel and
F. Diederich, Org. Biomol. Chem., 2008, 6, 3935; (b) A. Gangjee,
Y. Zeng, T. Talreja, J. J. McGuire, R. L. Kisliuk and S. F. Queener,
J. Med. Chem., 2007, 50, 3046; (c) S. F. Nielsen, E. Ø. Nielsen,
G. M. Olsen, T. Liljefors and D. Peters, J. Med. Chem., 2000, 43, 2217.
2 (a) P. Choto, K. Rasmussen and G. Grampp, Phys. Chem. Chem.
´
Phys., 2015, 17, 3415; (b) C. C. Ferron, M. Capdevila-Cortada,
R. Balster, F. Hartl, W. Niu, M. He, J. J. Novoa, J. N. L. Navarrete,
´
V. Hernandez and M. C. R. Delgado, Chem. – Eur. J., 2014, 20, 10351;
(c) A. M. Khenkin, G. Leitus and R. Neumann, J. Am. Chem. Soc.,
2010, 132, 11446; (d) C. Marti, J. Irurre, A. Alvarez-Larena,
J. F. Piniella, E. Brillas, L. Fajari, C. Aleman and L. Julia, J. Org.
Chem., 1994, 59, 6200; (e) T. Sarukawa and N. Oyama, J. Electrochem.
Soc., 2010, 157, F23; ( f ) G. Jones, B. Huang and S. F. Griffin, J. Org.
Chem., 1993, 58, 2035.
3 (a) J. Mao, T. Jia, G. Frensch and P. J. Walsh, Org. Lett., 2014,
16, 5304; (b) L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013,
42, 599; (c) R. B. N. Baig and R. S. Varma, Chem. Commun., 2012,
48, 2582; (d) P. Bichler and J. A. Love, Top. Organomet. Chem., 2010,
31, 39; (e) C.-K. Chen, Y.-W. Chen, C.-H. Lin, H.-P. Lin and C.-F. Lee,
Chem. Commun., 2010, 46, 282.
4 (a) J. Ham, I. Yang and H. Kang, J. Org. Chem., 2004, 69, 3236;
(b) A. V. Bierbeek and M. Gingras, Tetrahedron Lett., 1998, 39, 6283;
(c) A. B. Pierini, M. T. Baumgartner and R. A. Rossi, J. Org. Chem.,
1987, 52, 1089; (d) J. Lindley, Tetrahedron, 1984, 40, 1433.
5 (a) I. P. Beletskaya and V. P. Ananikov, Chem. Rev., 2011, 111, 1569;
(b) H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem. – Eur. J., 2011,
17, 5652; (c) P. Anbarasan, H. Neumann and M. Beller, Chem.
Commun., 2011, 47, 3233; (d) F. Ke, Y. Qu, Z. Jiang, Z. Li, D. Wu
12 (a) J. M. Medina, J. L. Mackey, N. K. Garg and K. N. Houk, J. Am.
Chem. Soc., 2014, 136, 15798; (b) F.-L. Liu, J.-R. Chen, Y.-Q. Zou,
Q. Wei and W.-J. Xiao, Org. Lett., 2014, 16, 3768; (c) S. S. Bhojgude,
T. Kaicharla and A. T. Biju, Org. Lett., 2013, 15, 5452.
13 (a) G. L. Morgans, E. L. Ngidi, L. G. Madeley, S. D. Khanye,
J. P. Michael, C. B. de Koning and W. A. L. van Otterlo, Tetrahedron,
2009, 65, 10650; (b) E. M. Engler, V. V. Patel and R. R. Schumaker,
Tetrahedron Lett., 1981, 22, 2035; (c) P. Blatcher, S. Warren, S. Ncube,
A. Pelter and K. Smith, Tetrahedron Lett., 1978, 26, 2349.
14 Different bases were tested (K2CO3, KOH, DABCO, KOAc, CsF,
Cs2CO3, KF/18-C-6). Cs2CO3 or KF/18-C-6 gave the best results in
the specific cases as stated in Table 3.
15 J. Evarts, E. Torres and P. L. Fuchs, J. Am. Chem. Soc., 2002, 124, 11093.
16 (a) P. Zhao, H. Yin, H. Gao and C. Xi, J. Org. Chem., 2013, 78, 5001;
(b) M. Kucukdisli and T. Opatz, Eur. J. Org. Chem., 2012, 4555.
17 (a) D. C. Rogness, N. A. Markina, J. P. Waldo and R. C. Larock, J. Org.
Chem., 2012, 77, 2743; (b) K. C. Majumdar and S. Nath, Synthesis,
2011, 1413; (c) Y. S. Song and K.-J. Lee, Synthesis, 2007, 3037.
´
´
and X. Zhou, Org. Lett., 2011, 13, 454; (e) M. A. Fernandez-Rodrıguez,
Q. Shen and J. F. Hartwig, Chem. – Eur. J., 2006, 12, 7782.
6 (a) Y. Yang, Z. Chen and Y. Rao, Chem. Commun., 2014, 50, 15037;
(b) J.-K. Qui, W.-J. Hao, D.-C. Wang, P. Wei, J. Sun, B. Jiang and
S.-J. Tu, Chem. Commun., 2014, 50, 14782; (c) F.-L. Yang and S.-K.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015