ChemComm
Page 4 of 5
COMMUNICATION
DOI: 10.1039/C5CC06995E
14. J. A. Foster, M.ꢀO. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. A. K.
Howard and J. W. Steed, Nature Chem., 2010, 2, 1037.
15. D. K. Kumar and J. W. Steed, Chem. Soc. Rev., 2014, 43, 2080.
16. A. Y.ꢀY. Tam and V. W.ꢀW. Yam, Chem. Soc. Rev., 2013, 42, 1540.
17. F. RodríguezꢀLlansola, B. Escuder and J. F. Miravet, J. Am. Chem. Soc.,
2009, 131, 11478.
18. H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li and C. Huang,
Langmuir, 2007, 23, 8224.
19. X. Yu, X. Cao, L. Chen, H. Lan, B. Liu and T. Yi, Soft Matter, 2012, 8,
3329.
S6). This more restricted rotation is likely to be due to the greater
conjugation of the urea nitrogen atom in the 4ꢀASA derivative
(Figure S8) as a result of the paraꢀelectron withdrawing effect of the
carboxylic acid functionality.51 As a result the hydrogen bond
acceptor ability of the urea carbonyl group is reduced for steric
reasons and hence its ability to express the gelꢀforming urea αꢀtape
motif is limited.45, 52 Overall, the short NH⋅⋅⋅O interactions in Xꢀray
structure of 2a indicate that the urea αꢀtape is significantly stronger
than those displayed by the 4ꢀASA analogues of type 1.
20. Y. Zhou, M. Xu, T. Yi, S. Xiao, Z. Zhou, F. Li and C. Huang, Langmuir,
2007, 23.
Interestingly, this electron withdrawing effect is evident in the 21. M.ꢀO. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed, Chem.
Rev., 2010, 110, 1960.
22. K. Araki and I. Yoshikawa, Top. Curr. Chem., 2005, 256, 133.
23. P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
structure of 4ꢀASA itself which is neutral, while 5ꢀASA is a
zwitterion because of the higher amine basicity.37
24. V. K. Potluri and A. D. Hamilton, J. Supramol. Chem., 2002, 2, 321.
25. M. George, G. Tan, V. T. John and R. G. Weiss, Chem.-Eur. J., 2005,
11, 3243.
Conclusions
In conclusion this work has shown that a robust supramolecular
linkage can replace a covalently bonded spacer in bis(urea)s,
allowing mono(urea)s to act as effective gelators by means of
supramolecular multivalency. In addition to the formation of
multiple hydrogen bonded chain interactions, gelation is favoured by
nonꢀcoplanarity of the urea group and the aryl substituent,
maximising the exposure and hence hydrogen bond basicity of the
urea carbonyl acceptor. The presence of sterically bulky branched
substituents as in 2b also apparently reduces gelation efficiency,
again likely as a result of reduced steric accessibility of the urea
carbonyl group and hence reduced hydrogen bonded chain growth
rate.
26. C. Wang, D. Zhang and D. Zhu, J. Am. Chem. Soc., 2005, 127, 16372.
27. S.ꢀY. Hsueh, C.ꢀT. Kuo, T.ꢀW. Lu, C.ꢀC. Lai, Y.ꢀH. Liu, H.ꢀF. Hsu, S.ꢀ
M. Peng, C.ꢀh. Chen and S.ꢀH. Chiu, Angew. Chem., Int. Ed., 2010, 49,
9170.
28. G. O. Lloyd, M. O. M. Piepenbrock, J. A. Foster, N. Clarke and J. W.
Steed, Soft Matter, 2012, 8, 204.
29. C. Deng, R. Fang, Y. Guan, J. Jiang, C. Lin and L. Wang, Chem.
Commun., 2012, 48, 7973.
30. M. Takizawa, A. Kimoto and J. Abe, Dyes and Pigments, 2011, 89, 254.
31. S.ꢀY. Hsueh, C.ꢀT. Kuo, T.ꢀW. Lu, C.ꢀC. Lai, Y.ꢀH. Liu, H.ꢀF. Hsu, S.ꢀ
M. Peng, C.ꢀh. Chen and S.ꢀH. Chiu, Angew. Chem., Int. Ed., 2010, 49,
9170.
32. C. Wang, D. Q. Zhang and D. B. Zhu, Langmuir, 2007, 23, 1478.
33. M. de Loos, A. Friggeri, J. van Esch, R. M. Kellogg and B. L. Feringa,
Org. Biomol. Chem., 2005, 3, 1631.
We thank the EPSRC for support of this work (EP/J013021/1)
34. L. Applegarth, N. Clarke, A. C. Richardson, A. D. M. Parker, I.
RadosavljevicꢀEvans, A. E. Goeta, J. A. K. Howard and J. W. Steed,
Chem. Commun., 2005, 5423.
35. F. S. Schoonbeek, J. H. van Esch, R. Hulst, R. M. Kellogg and B. L.
Feringa, Chem.-Eur. J., 2000, 6, 2633.
36. J. Bernstein, R. E. Davis, L. Shimoni and N.ꢀL. Chang, Angew. Chem.
Int. Ed. Engl., 1995, 34, 1555.
37. R. Montis and M. B. Hursthouse, CrystEngComm, 2012, 14, 5242.
38. G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
39. M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed, Chem.
Commun., 2008, DOI: 10.1039/b804259d, 2644.
Notes and references
a Department of Chemistry, South Road, University of Durham, DH1 3LE
(UK). E-mail: jon.steed@durham.ac.uk; Fax: +44(0)191 384 4737;
Tel: +44 (0)191 334 2085. Electronic Supplementary Information (ESI)
available: tables of gelation experiments and single crystal structure
determination in CIF format CCDC 1419680ꢀ1419682. See
DOI: 10.1039/c000000x/ The underlying research data for this paper
is available in accordance with EPSRC open data policy from
40. K. Hyun, S. H. Kim, K. H. Ahn and S. J. Lee, J Non-Newtonian Fluid
Mech., 2002, 107, 51.
41. K. Hyun, J. Nam, M. Wilhellm, K. Ahn and S. Lee, Rheol Acta, 2006,
45, 239.
1. A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem.,
Int. Ed., 2008, 47, 8002.
42. F. H. Allen, W. D. S. Motherwell, P. R. Raithby, G. P. Shields and R.
Taylor, New J. Chem., 1999, 23, 25.
43. M. C. Etter, Z. UrbanczykꢀLipkowska, M. ZiaꢀEbrahimi and T. W.
Panunto, J. Am. Chem. Soc, 1990, 112, 8415.
44. L. S. Reddy, S. Basavoju, V. R. Vangala and A. Nangia, Cryst. Growth
Des., 2005, 6, 161.
45. J. H. van Esch, S. DeFeyter, R. M. Kellogg, F. DeSchryver and B. L.
Feringa, Chem.-Eur. J., 1997, 3, 1238.
46. L. Baldini, A. Casnati, F. Sansone and R. Ungaro, Chem. Soc. Rev.,
2007, 36, 254.
47. C. Laurence and M. Berthelot, Persp. Drug Disc. Des., 2000, 18, 39.
48. C. Baddeley, Z. Yan, G. King, P. M. Woodward and J. D. Badjić, J. Org.
Chem., 2007, 72, 7270.
49. U. K. Das, D. R. Trivedi, N. N. Adarsh and P. Dastidar, J. Org. Chem.,
2009, 74, 7111.
50. D. R. Trivedi, A. Ballabh, P. Dastidar and B. Ganguly, Chem.-Eur. J.,
2004, 10, 5311.
2. J. F. Miravet and B. Escuder, in Supramolecular Systems in Biomedical
Fields, ed. H.ꢀJ. Schneider, Royal Society of Chemistry, Cambridge,
2013, p. 331.
3. S. DíazꢀOltra, C. Berdugo, J. F. Miravet and B. Escuder, New J. Chem.,
2015, 39, 3785.
4. B. Escuder, F. RodriguezꢀLlansola and J. F. Miravet, New J. Chem.,
2010, 34, 1044.
5. Z. Yang, K. Xu, L. Wang, H. Gu, H. Wei, M. Zhang and B. Xu, Chem.
Commun., 2005, 4414.
6. J. J. Panda, A. Mishra, A. Basu and V. S. Chauhan, Biomacromolecules,
2008, 9, 2244.
7. S. Bhuniya, Y. J. Seo and B. H. Kim, Tetrahedron Lett., 2006, 47, 7153.
8. M. M. Smith and D. K. Smith, Soft Matter, 2011, 7, 4856.
9. B. Adhikari and A. Banerjee, Soft Matter, 2011, 7, 9259.
10. D. K. Smith, in Organic Nanostructures, eds. L. J. Atwood and J. W.
Steed, WileyꢀVCH, Weinheim, Germany, 2008, pp. 111.
11. C. Sudha, P. Parimaladevi and K. Srinivasan, Mater. Sci. Eng.: C, 2015,
47, 150.
12. Y. Diao, K. E. Whaley, M. E. Helgeson, M. A. Woldeyes, P. S. Doyle,
A. S. Myerson, T. A. Hatton and B. L. Trout, J. Am. Chem. Soc., 2012,
134, 673.
51. E. V. Anslyn and D. A. Dougherty, Modern Physical Organic
Chemistry, University Science Books, Sausalito, California, USA, 2006.
52. J. H. van Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek, R.
M. Kellogg and B. L. Feringa, Chem. Eur. J., 1999, 5, 937.
13. D. J. Adams, K. Morris, L. Chen, L. C. Serpell, J. Bacsa and G. M. Day,
Soft Matter, 2010, 6, 4144.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012