R. Kaspera et al. / Tetrahedron Letters 51 (2010) 2017–2019
2019
12. Gueritte-Voegelein, F.; Guenard, D.; Potier, P. J. Nat. Prod. 1987, 50, 9–18.
13. Giner, J. L.; Li, X.; Mullins, J. J. J. Org. Chem. 2003, 68, 10079–10086.
14. Willenbrink, D.; Tantillo, D. J. Russ. J. Gen. Chem. 2008, 78, 723–731.
15. Giner, J. L.; Faraldos, J. A. Helv. Chim. Acta 2003, 86, 3613–3622.
16. Abe, I.; Prestwich, G. D. In Comprehensive Natural Product Chemistry; Cane, D. E.,
Ed.; Elsevier: Amsterdam, NL, 1999; pp 267–298.
mixture was1 extracted with AcOEt to give diol 5a (4 mg, 43%) after LC
purification. H NMR (CDCl , 600 MHz), d 6.18 (1H, d, J = 11 Hz, H-10), 6.08 (1H,
br m, not resolved, H-13), 5.92 (1H, d, J = 11.1 Hz, H-9), 5.49 (1H, dd, J = 4.5 and
12.1 Hz, H-7), 4.27 (1H, t, J = 3.3 Hz, H-5), 4.20 (1H, d, J = 3.5 Hz, H-2), 3.79 (1H,
d, J = 4.8 Hz, Ha-20), 3.68, (1H, s, OH at C1), 3.21 (1H, s, OH at C2), 3.19 (1H, d,
J = 3.5 Hz, H-3), 2.56 (1H, dd, J = 9.9, 14.9 Hz, H-14), 2.41 (1H, d, J = 4.8 Hz, Hb-
3
1
7. Hallahan, D. L.; Lau, S. M.; Harder, P. A.; Smiley, D. W.; Dawson, G. W.; Pickett, J.
A.; Christoffersen, R. E.; O’Keefe, D. P. Biochim. Biophys. Acta 1994, 1201, 94–100.
8. Mizutani, M.; Todoroki, Y. Phytochem. Rev. 2006, 5, 385–404.
9. Rontein, D.; Onillon, S.; Herbette, G.; Lesot, A.; Werck-Reichhart, D.; Sallaud, C.;
Tissier, A. J. Biol. Chem. 2008, 283, 6067–6075.
0. Baloglu, E.; Kingston, D. G. J. Nat. Prod. 1999, 62, 1448–1472.
1. Itokawa, H. In Taxus—The Genus Taxus; Itokawa, H. L., Lee, K. H., Eds.; Taylor &
Francis: London, UK, 2003; pp 35–78.
20), 2.19 (3H s, C(O)CH
(3H, s, C(O)CH at C7 or 13), 2.08 (3H, s, C(O)CH
C(O)CH at C9), 1.97 (3H, s, C(O)CH at C5), 1.83 (1H, dd, J = 6.2, 15.0 Hz, H-14),
1.78 (1H, br m, H-6), 1.56 (3H, s, CH ), 1.28 (3H, CH -19), 1.23 (3H, s, CH ).
HRMS m/z found 633.25194 [M +Na], C30 13Na requires 633.2523.
29. Compound 7: Bz O was prepared as follows: A 200 L portion of dry benzene
containing dry pyridine (16 L) was supplemented with benzoyl chloride
(7.2 L) and stirred for 10 min. 7.5 mg benzoic acid (8.0 mg, 62.5 mol) or 4-
[ H]-benzoic acid [450 Ci] for radiolabeling) in benzene was added in
portions over 5 min period. After 10 min, the reaction mixture was diluted
with CH Cl (1 mL) and filtered through a SiO -column to elute pure benzoic
anhydride. A stoichiometric amount of Bz O in CH Cl (0.5 mL) and DMAP
(1 mg) in CH Cl (0.5 mL) were added to 5a (2.0 mg, 3.3
solution was stirred at room temperature over night. H
3
at C10), 2.17 (3H, s, CH
3
-18), 2.15 (1H, m, H-6), 2.09
3
3
at C7 or 13), 2.04 (3H, s,
1
1
3
3
3
3
3
+
42
H O
2
2
2
l
l
l
l
3
2
2
2
2
2
2. Ketchum, R. E.; Horiguchi, T.; Qiu, D.; Williams, R. M.; Croteau, R. B.
l
Phytochemistry 2007, 68, 335–341.
3. Ketchum, R. E.; Rithner, C. D.; Qiu, D.; Kim, Y. S.; Williams, R. M.; Croteau, R. B.
Phytochemistry 2003, 62, 901–909.
4. Ketchum, R. E. B.; Tandon, M.; Gibson, D. M.; Begley, T.; Schuler, M. L. J. Nat.
Prod. 1999, 62, 1395–1398.
5. Samaranyake, G.; Neidigh, K. A.; Kingston, D. G. I. J. Nat. Prod. 1993, 56, 884–
2
2
2
2
2
2
2
2
lmol). The resulting
2
O was added, and the
mixture was extracted with EtOAc. Purification by LC gives benzoate 7 in 5%.
1
8
98.
6. Compound 2: Peracetic acid (10
5 mg, 10 mol) dissolved in dry CH
3
H NMR (CDCl , 600 MHz), d 7.95 (2H, d, J = 8.5 Hz, benzoyl ortho-H), 7.58 (1H
l
L, 50
l
2
mol) was added to radiolabeled 1
t, J = 7.34 Hz, benzoyl para-H), 7.46 (2H, t, J = 7.8 Hz, benzoyl meta-H), 6.26 (1H,
d, J = 10.9 Hz, H-10), 6.14 (1H, d, J=11.3 Hz, H-9), 6.13 (1H, m, H-13,
overlapping with C9), 5.79 (1H, d, J=3.4 Hz, H-2), 5.53 (1H, dd, J = 4.4,
12.0 Hz, H-7), 4.20 (1H, t, J = 3.1 Hz, H-5), 3.59 (1H, d, J = 4.7 Hz, H-20a), 3.32
(1H, d, J = 3.6 Hz, H-3), 2.65 (1H, dd, J = 9.8, 14.6 Hz, Hb-14), 2.30 (1H, d,
(
l
2
Cl
(1 mL). The reaction mixture was
stirred over night at 6–10 °C. Purification by LC gave epoxide 2 (250
NMR (CDCl 600 MHz) 6.02 (1H, d, J = 10.69 Hz, H-10), 5.83 (1H, d,
J = 10.69 Hz, H-9), 5.81 (1H, m, overlapping H-13), 4.38 (1H, t, J = 2.57 Hz, H-
l H
g, 5%). 1
3
,
d
5
2
2
), 2.79 (1H, dd, J = 4.92 Hz, 2.13 Hz, H-3), 2.72 (1H, d, J = 3.86 Hz, H-20a), 2.77–
.68 (1H, m, H-14b), 2.42 (1H, d, J = 3.86 Hz, H-20b), 2.16 (3H, s, C(O)CH at C5),
.09 (3H, d, J = 0.95 Hz, CH -18), 2.08 (3H, s, C(O)CH at C13), 2.06 (3H, s,
at C9), 2.00 (3H, s, C(O)CH at C10), 1.95 (1H, m, H-6b), 1.84 (1H, m, H-
b), 1.76 (1H, m, H-1), 1.74 (1H, m, H-6 ), 1.71 (1H, m, H-7 ), 1.58 (3H, s, CH
7), 1.52 (1H, m, H-2b), 1.07 (3H, s, CH -16, overlapping H-14 , through
-19), 0.88 (1H, m, H-2 ); HRMS m/z found 543.25572
Na requires 543.25699.
7. Lin, H.-X.; Jiang, Y.; Chen, J.-M.; Chen, J.-K.; Chen, M.-Q. J. Mol. Struct. 2005, 738,
9–65.
8. Compound 5a: To a solution of 4 (10 mg, 15.4
a catalytic amount of K CO . After 2 h, aq satd NH
J = 5.0 Hz, H-20b), 2.26 (3H, s, CH
3
-18), 2.22 (3H, s, C(O)CH
3
at C-10), 2.14 (3H,
1
3
s, C(O)CH
s, C(O)CH
2.02 (3H, s, C(O)CH
16), 1.36 (3H, s, CH
[M+Na], C37
3
at C-13), 2.14 (Hb-6, through HMQC, covered in H NMR), 2.10 (3H,
at C7), 2.08 (3H, s, C(O)CH at C9), 2.07 (m, H -14, through HMQC),
at C5), (1H, ddd, J = 3.1, 3.9, 14.8, H -6), 1.716 (3H, s, CH
-19), 1.26 (3H, s, CH -17); HRMS m/z found 737.27884
14Na requires 737.27853.
3
3
3
3
a
C(O)CH
7
1
3
3
3
a
3
-
a
a
3
-
3
3
3
a
46
H O
HMQC), 0.97 (3H, s, CH
3
a
30. Wheeler, A. L.; Long, R. M.; Ketchum, R. E.; Rithner, C. D.; Williams, R. M.;
Croteau, R. Arch. Biochem. Biophys. 2001, 390, 265–278.
31. Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 583–587.
32. Chau, M.; Croteau, R. Arch. Biochem. Biophys. 2004, 427, 48–57.
33. Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13591–13596.
+
[
40 9
M +Na], C28H O
2
2
5
l
mol) in MeOH (1 mL) was added
Cl (1 mL) was added. The
2
3
4