Inorganic Chemistry
Article
Foods by Multivariate Calibration and Artificial Neural Networks.
Food Chem. 2005, 89, 465−473.
REFERENCES
■
(1) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi,
E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M.
Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329,
424−428.
(21) Ainscough, E. W.; Brodie, A. M. The Determination of Vanillin
in Vanilla extract: An Analytical Chemistry Experiment. J. Chem. Educ.
1990, 67, 1070−1072.
́
(22) Lopez, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of
(2) Li, J. R.; Sculley, J.; Zhou, H. C. Metal-Organic Frameworks for
Separations. Chem. Rev. 2012, 112, 869−932.
Minor and Trace Volatile Compounds in Wine by Solid-Phase
Extraction and Gas Chromatography with Mass Spectrometric
Detection. J. Chromatogr. A 2002, 966, 167−177.
(3) Ma, L. Q.; Abney, C.; Lin, W. B. Enantioselective Catalysis with
Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38,
1248−1256.
(23) Peng, H.; Wang, S.; Zhang, Z.; Xiong, H.; Li, J.; Chen, L.; Li, Y.
Molecularly Imprinted Photonic Hydrogels as Colorimetric Sensors
for Rapid and Label-free Detection of Vanillin. J. Agric. Food Chem.
2012, 60, 1921−1928.
(4) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne,
R. P.; Hupp, J. T. Metal-Organic Framework Materials as Chemical
Sensors. Chem. Rev. 2012, 112, 1105−1125.
(24) Bettazzi, F.; Palchetti, I.; Sisalli, S.; Mascini, M. A Disposable
Electrochemical Sensor for Vanillin Detection. Anal. Chim. Acta 2006,
555, 134−138.
(5) Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. A Water-Stable
Metal-Organic Framework with Highly Acidic Pores for Proton-
Conducting Applications. J. Am. Chem. Soc. 2013, 135, 1193−1196.
(6) Mao, J.; Yang, L.; Yu, P.; Wei, X. W.; Mao, L. Q. Electrocatalytic
four-electron reduction of oxygen with Copper (II)-based Metal-
Organic Frameworks. Electrochem. Commun. 2012, 19, 29−31.
(7) Hu, H.; Han, L.; Yu, M. Z.; Wang, Z. Y.; Lou, X. W. Metal-
Organic-Framework-Engaged Formation of Co Nanoparticle-Embed-
ded carbon@Co9S8 double-shelled nanocages for efficient oxygen
reduction. Energy Environ. Sci. 2016, 9, 107−111.
(25) Feng, F.; Yang, X.; Gao, S. Y.; Shi, J. L.; Cao, R. Facile and
Rapid Growth of Nanostructured Ln-BTC Metal-Organic Framework
Films by Electrophoretic Deposition for Explosives Sensing in Gas
and Cr3+ Detection in Solution. Langmuir 2017, 33, 14238−14243.
(26) Hod, I.; Bury, W.; Karlin, D. M.; Deria, P.; Kung, C. W.; Katz,
M. J.; So, M.; Klahr, B.; Jin, D.; Chung, N. Y. W.; Odom, T. W.;
Farha, O. K.; Hupp, J. T. Directed Growth of Electroactive Metal-
Organic Framework Thin Films Using Electrophoretic Deposition.
Adv. Mater. 2014, 26, 6295−6300.
(8) Gao, Y. X.; Yu, G.; Liu, K.; Wang, B. Luminescent Mixed-Crystal
Ln-MOF Thin Film for the Recognition and Detection of
Pharmaceuticals. Sens. Actuators, B 2018, 257, 931−935.
(9) Ferey, G.; Millange, F.; Morcrette, M.; Serre, C.; Doublet, M. L.;
Greneche, J. M.; Tarascon, J. M. Mixed-valence Li/Fe-based Metal-
Organic Frameworks with both Reversible Redox and Sorption
Properties. Angew. Chem., Int. Ed. 2007, 46, 3259−3263.
(10) Diaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-
MOF-5 as Electrode for Supercapacitors. Mater. Lett. 2012, 68, 126−
128.
(27) Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D.
R. LDH Nanocages Synthesized with MOF Templates and Their
High Performance as Supercapacitors. Nanoscale 2013, 5, 11770−
11775.
(28) Xu, W. J.; Sun, Y. X.; Ding, B.; Zhang, J. B. Zeolitic-Imidazolate
Frameworks Derived Pt-free Counter Electrodes for High-Perform-
ance Quantum Dot-Sensitized Solar Cells. R. Soc. Open Sci. 2018, 5,
180335.
(29) Jin, M.; Lu, S. Y.; Ma, L.; Gan, M. Y.; Lei, Y.; Zhang, X. L.; Fu,
G.; Yang, P. S.; Yan, M. F. Different Distribution of In-situ Thin
Carbon Layer in Hollow Cobalt Sulfide Nanocages and Their
Application for Supercapacitors. J. Power Sources 2017, 341, 294−301.
(30) Sivakumar, M.; Sakthivel, M.; Chen, S. M. Simple Synthesis of
Cobalt Sulfide Nanorods for Efficient Electrocatalytic Oxidation of
Vanillin in Food Samples. J. Colloid Interface Sci. 2017, 490, 719−726.
(31) Feng, L. L.; Fan, M. H.; Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Chen,
H.; Chen, W.; Wang, D. J.; Zou, X. X. Metallic Co9S8 Nanosheets
Grown on Carbon Cloth as Efficient Binder-Free Electrocatalysts for
the Hydrogen Evolution Reaction in Neutral Media. J. Mater. Chem. A
2016, 4, 6860−6867.
(32) Hardcastle, J. L.; Paterson, C. J.; Compton, R. G. Biphasic
Sonoelectroanalysis: Simultaneous Extraction From, and Determi-
nation of Vanillin in Food Flavoring. Electroanalysis 2001, 13, 899−
905.
(33) Niu, Y. D.; Qian, X.; Zhang, J.; Wu, W. M.; Liu, H. Y.; Xu, C.;
Hou, L. X. Stepwise Synthesis of CoS2-C@ CoS2 Yolk-shell
Nanocages with much Enhanced Electrocatalytic Performances both
in Solar Cells and Hydrogen Evolution Reactions. J. Mater. Chem. A
2018, 6, 12056−12065.
(11) Shekhah, O.; Liu, J.; Fischer, R. A.; Woll, Ch. MOF thin films:
Existing and Future Applications. Chem. Soc. Rev. 2011, 40, 1081−
1106.
̈
(12) Hermes, S.; Schroder, F.; Chelmowski, R.; Woll, C.; Fischer, R.
A. Selective Nucleation and Growth of Metal-Organic Open
Framework Thin Films on Patterned COOH/CF3-Terminated Self-
Assembled Monolayers on Au(111). J. Am. Chem. Soc. 2005, 127,
13744−13745.
(13) Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.;
Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Woll,
C. Step-by-Step Route for the Synthesis of Metal-Organic Frame-
works. J. Am. Chem. Soc. 2007, 129, 15118−15119.
(14) Yoo, Y.; Jeong, H. K. Rapid fabrication of Metal Organic
Framework Thin Films using Microwave-Induced Thermal Deposi-
tion. Chem. Commun. 2008, 0, 2441−2443.
(15) Wu, Y.; Li, F.; Liu, H.; Zhu, W.; Teng, M.; Jiang, Y.; Li, W.; Xu,
D.; He, D.; Hannam, P.; Li, G. Electrospun Fibrous Mats as Skeletons
to Produce Free-Standing MOF Membranes. J. Mater. Chem. 2012,
22, 16971−16978.
(16) Chen, Y.; Li, S.; Pei, X.; Zhou, J.; Feng, X.; Zhang, S.; Cheng,
Y.; Li, H.; Han, R.; Wang, B. A Solvent-Free Hot-Pressing Method for
Preparing Metal-Organic-Framework Coatings. Angew. Chem., Int. Ed.
2016, 55, 3419−3423.
̈
(17) Vander Biest, O. O.; Vandeperre, L. J. Electrophoretic
Deposition of Materials. Annu. Rev. Mater. Sci. 1999, 29, 327−352.
(18) Veeramani, V.; Madhu, R.; Chen, S. M.; Veerakumar, P.; Syu, J.
J.; Liu, S. B. Cajeput Tree Bark Derived Activated Carbon for the
Practical Electrochemical Detection of Vanillin. New J. Chem. 2015,
39, 9109−9115.
(19) Deng, P.; Xu, Z.; Zeng, R.; Ding, C. Electrochemical Behavior
and Voltammetric Determination of Vanillin Based on an Acetylene
Black Paste Electrode Modified with Graphene-Polyvinylpyrrolidone
Composite Film. Food Chem. 2015, 180, 156−163.
(20) Ni, Y.; Zhang, G.; Kokot, S. Simultaneous Spectrophotometric
Determination of Maltol, Ethyl Maltol, Vanillin and Ethyl Vanillin in
G
Inorg. Chem. XXXX, XXX, XXX−XXX