Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For reviews, see: (a) S. Blechert and M. Schuster, Angew. Chem., Int.
Ed. Engl., 1997, 36, 2036–2056; (b) T. P. Montgomery, A. M. Johns and
R. H. Grubbs, Catalysts, 2017, 6, 87; (c) O. M. Ogba, N. C. Warner,
D. J. O’Leary and R. H. Grubbs, Chem. Soc. Rev., 2018, 47, 4510–4544.
2 (a) M. Gatti, E. Drinkel, L. Wu, I. Pusterla, F. Gaggia and R. Dorta, J. Am.
Chem. Soc., 2010, 132, 15179–15181; (b) V. De Matteis, O. Dufay, D. C. J.
Waalboer, F. van Delft, J. Tiebes and F. P. J. T. Rutjes, Eur. J. Org. Chem.,
2007, 2667–2675; (c) S. S. Salim, R. K. Bellingham, V. Satcharoen and
R. C. D. Brown, Org. Lett., 2003, 5, 3403–3406; (d) W. Chao and S. M.
Weinreb, Org. Lett., 2003, 5, 2505–2507; (e) D. E. White, I. C. Stewart,
B. A. Seashore-Ludlow, R. H. Grubbs and B. M. Stoltz, Tetrahedron, 2010,
66, 4668–4686.
Fig. 4 X-ray crystal structure analysis of the carbide catalyst.15
3 (a) A. Whitehead, J. D. Moore and P. R. Hanson, Tetrahedron Lett., 2003,
44, 4275–4277; (b) A. Okada, T. Ohshima and M. Shibasaki, Tetrahedron
Lett., 2001, 42, 8023–8027; (c) M. Arisawa, C. Theeraladanon, A. Nishida
and M. Nakagawa, Tetrahedron Lett., 2001, 42, 8029–8033.
the peak at 34.9 ppm was found to be the peak for a carbide
complex derived from the Grubbs II catalyst (Fig. 4).14
From the result of this carbide complex and 31P-NMR
described above, the Grubbs II catalyst is considered to be
rapidly converted to a carbide complex when it reacts with a
dialkylarylvinylsilane such as 1a, and loses activity as a metathesis
catalyst.7 On the other hand, when the Grubbs II catalyst reacted
with substituted dialkylarylvinylsilane, having a methyl substituent
at the beta position of the silicon atom, such as dimethylnaphthyl-
iso-propenylsilane (1b), beta-silyl elimination of the ruthenacyclo-
butane intermediate did not proceed and the expected metathesis
product was yielded probably due to the effect of steric hindrance.
Improved understanding of catalyst decomposition, particu-
larly those pathways operating for the most vulnerable active
species, is critical to guide process implementation and catalyst
redesign.
4 (a) S. S. Kinderman, J. H. van Maarseveen, H. E. Schoemaker,
H. Hiemstra and F. P. J. T. Rutjes, Org. Lett., 2001, 3, 2045–2048;
(b) M. Arisawa, Y. Terada, M. Nakagawa and A. Nishida, Angew.
Chem., Int. Ed., 2002, 41, 4732–4734; (c) T. J. Donohoe, C. R. Jones
and L. C. A. Barbosa, J. Am. Chem. Soc., 2011, 133, 16418–16421.
5 (a) J. Renaud and S. G. Ouellet, J. Am. Chem. Soc., 1998, 120,
7995–7996; (b) R. P. Murelli, A. K. Cheung and M. L. Snapper,
J. Org. Chem., 2007, 72, 1545–1552; (c) H. Jang, A. R. Zhugralin,
Y. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2011, 133, 7859–7871.
6 (a) R. C. D. Brown and V. Satcharoen, Heterocycles, 2006, 70, 705–736;
(b) P. Van de Weghe, P. Bisseret, N. Blanchard and J. Eustache,
J. Organomet. Chem., 2006, 691, 5078–5108; (c) B. Schmidt, S. Hauke,
S. Krehl and O. Kunz, Comprehensive Organic Synthesis II, vol. 5,
pp. 1400–1482.
:
´
7 (a) P. Sliwa, K. Kurleto, J. Handzlik, S. Rogalski, P. Zak, B. Wyrzykiewicz
and C. Pietraszuk, Organometallics, 2016, 35, 621–628; (b) C. Pietraszuk,
H. Fischer, S. Rogalski and B. J. Marciniec, Organomet. Chem., 2005, 690,
5912–5921; (c) C. Pietraszuk, B. Marciniec and H. Fischer, Tetrahedron
Lett., 2003, 44, 7121–7124.
8 The same reaction of dimethyl naphthyl-alpha-methylvinylsilane
(1c, see the ESI†) did not proceed.
9 (a) T. Matsuda, S. Kadowaki, T. Goya and M. Murakami, Org. Lett.,
2007, 9, 133–136; (b) S. Yamaguchi, C. Xu and K. Tamao, J. Am.
Chem. Soc., 2003, 125, 13662–13663.
In summary, although the metathesis reaction of dialkylaryl-
vinylsilane has been difficult to date, it was found that the
metathesis reaction proceeds when using dialkylaryl-iso-propenyl-
silane, having a methyl substituent at the beta position of the silyl
atom to prevent unwanted beta-silyl elimination, as a substrate. 10 Murakami group reported RCM of vinylsilane using the Mo catalyst.
They also reported an alpha-methyl substituent at vinylsilane aided
We have also succeeded in synthesizing polycyclic silicon-
RCM using the Ru catalyst. However, no one has reported the effect
containing cyclic compounds by combining EM, Diels–Alder and
of the beta-methyl substituent on vinylsilane metathesis using the
oxidation reactions. Furthermore, our findings showed that vinyl-
silane changed the Grubbs II catalyst to a carbide catalyst and that
its catalytic activity was inactivated during metathesis.
This work was partially supported by a Grant-in-Aid from
JSPS KAKENHI for Precisely Designed Catalysts with Customized
Scaffolding (Grant No. JP 18H04260), A19J218090, T15K149760, and
Ru catalyst: (a) T. Matsuda, Y. Yamaguchi and M. Murakami, Synlett,
2008, 561–564; (b) T. Matsuda, Y. Yamaguchi, N. Ishida and
M. Murakami, Synlett, 2010, 2743–2746.
11 S. Yoshioka, Y. Fujii, H. Tsujino, T. Uno, H. Fujioka and M. Arisawa,
Chem. Commun., 2017, 53, 5970–5973.
12 W. Chen and J. Wang, J. Am. Chem. Soc., 2013, 32, 1958–1963.
13 B. R. Galan, M. Pitak, M. Gembicky, J. B. Keister and S. T. Diver,
J. Am. Chem. Soc., 2009, 131, 6822–6832.
T15KT00630, by Platform Project for Supporting Drug Discovery and 14 (a) E. F. Eide, P. E. Romero and W. E. Piers, J. Am. Chem. Soc., 2008,
130, 4485–4491; (b) S. R. Dubberley, P. E. Romero, W. E. Piers,
R. McDonald and M. Parvez, Inorg. Chim. Acta, 2006, 359, 2658–2664.
15 The X-ray crystal structural data of the carbide catalyst were deposited
Life Science Research (Basis for Supporting Innovative Drug
Discovery and Life Science Research (BINDS)) from AMED under
Grant Number JP18am0101084 and JP19am0101084.
(CCDC 1938337)†.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14070--14073 | 14073