Journal of the American Chemical Society
Communication
dichlorocyclopropane and an amide; formylation of the hindered
amine occurred slowly due to buildup of acid (isonitriles are
produced by subsequent formamide dehydration).30 Our
alternative use of difluorocarbene for isonitrile synthesis
therefore offers some advantages over existing methods,
especially when multiple functional groups are present or the
amine is hindered. This three-step procedure provides an
efficient, stereo- and chemoselective strategy to install the
kalihinol A-ring isocyanohydrin motif.
In summary, we have demonstrated a concise route to access
the kalihinol (bifloran) ICTs via a putative biosynthetic
intermediate, protokalihinol (2a) that we anticipate can be
divergently advanced to the natural series of metabolites. The
synthesis compares favorably to the current best approach to the
kalihinols by Vanderwal: it is longer in total step count (17 vs
12), but higher in yield by one order of magnitude (1.3% vs
0.13%). The higher efficiency derives from solutions to
stereochemical and chemoselectivity problems raised by prior
work, but left unsolved. Some of these solutions include (1) a
method to synthesize the kalihinol stereotetrad using an iterative
cycloaddition of the new building block, “heterodendralene” 5;
(2) an alkoxide-directed isomerization method to access the
thermodynamically disfavored Δ3,4 unsaturated trans-bifloran
skeleton found throughout the diterpene class, and (3) a short,
high-yielding, regio- and stereoselective strategy for installing the
A-ring isocyanohydrin motif, including difluorocarbene-medi-
ated isonitrile synthesis. This short and divergent route from
protokalihinol 2a allowed us to generate several analogs related
to the metabolite series. We are currently using these
compounds to interrogate the antiplasmodial activity and
mechanism(s) of the kalihinol class.
REFERENCES
■
(1) Emsermann, J.; Kauhl, U.; Opatz, T. Mar. Drugs 2016, 14, 16.
(2) Shenvi, R. A.; Schnermann, M. J. Nat. Prod. Rep. 2015, 32, 543.
(3) (a) Isolation: Chang, C. W. J.; Patra, A.; Roll, D. M.; Scheuer, P. J.;
Matsumoto, G. K.; Clardy, J. J. Am. Chem. Soc. 1984, 106, 4644. (b)
Kalihinol antimalarial activity: Miyaoka, H.; Shimomura, M.; Kimura,
H.; Yamada, Y.; Kim, H.-S.; Yusuke, W. Tetrahedron 1998, 54, 13467.
(4) (a) Wright, A. D.; Wang, H. Q.; Gurrath, M.; Konig, G. M.; Kocak,
G.; Neumann, G.; Loria, P.; Foley, M.; Tilley, L. J. Med. Chem. 2001, 44,
873. (b) Wright, A. D.; McCluskey, A.; Robertson, M. J.; MacGregor, K.
A.; Gordon, C. P.; Guenther. Org. Biomol. Chem. 2011, 9, 400.
(c) Young, R. M.; Adendorff, M. R.; Wright, A. D.; Davies-Coleman, M.
T. Eur. J. Med. Chem. 2015, 93, 373.
(5) Sandoval, I. T.; Manos, E. J.; Van Wagoner, R. M.; Delacruz, R. G.
C.; Edes, K.; Winge, D. R.; Ireland, C. M.; Jones, D. A. Chem. Biol. 2013,
20, 753.
(6) Lu, H.-H.; Pronin, S. V.; Antonova-Koch, Y.; Meister, S.; Winzeler,
E. A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 7268.
(7) Pronin, S. V.; Shenvi, R. A. J. Am. Chem. Soc. 2012, 134, 19604.
(8) Pronin, S. V.; Reiher, C. A.; Shenvi, R. A. Nature 2013, 501, 195.
(9) (a) White, R. D.; Wood, J. L. Org. Lett. 2001, 3, 1825. (b) White, R.
D.; Keaney, G. F.; Slown, C. D.; Wood, J. L. Org. Lett. 2004, 6, 1123.
(c) Miyaoka, H.; Abe, Y.; Sekiya, N.; Mitome, H.; Kawashima, E. Chem.
Commun. 2012, 48, 901. (d) Miyaoka, H.; Abe, Y.; Kawashima, E. Chem.
Pharm. Bull. 2012, 60, 1224. (e) Daub, M. E.; Prudhomme, J.; Le Roch,
K.; Vanderwal, C. D. J. Am. Chem. Soc. 2015, 137, 4912. (f) Daub, M. E.;
Prudhomme, J.; Mamoun, C. B.; Le Roch, K. G.; Vanderwal, C. D. ACS
(10) Kalihinene X was synthesized with stereocontrol in 35-steps, but
lacks the A-ring isocyanohydrin and characteristic trans-ring fusion of
the kalihinols. See: Miyaoka, H.; Shida, H.; Yamada, N.; Mitome, H.;
Yamada, Y. Tetrahedron Lett. 2002, 43, 2227.
(11) Dewick, P. M. Medicinal Natural Products: A Biosynthetic
Approach; Wiley, 2009.
(12) For an exception, see: Zhao, C.; Toste, F. D.; Raymond, K. N.;
Bergman, R. G. J. Am. Chem. Soc. 2014, 136, 14409.
(13) For an excellent review of dendralenes, see: Hopf, H.; Sherburn,
M. S. Angew. Chem., Int. Ed. 2012, 51, 2298.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(14) Newton, C. G.; Drew, S. L.; Lawrence, A. L.; Willis, A. C.;
Paddon-Row, M. N.; Sherburn, M. S. Nat. Chem. 2015, 7, 82.
(15) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252−5253.
(16) Reich, H. J.; Renga, J. M.; Reich, I. L. J. Am. Chem. Soc. 1975, 97,
5434.
(17) For the closest precedent to this stereoselective cycloaddition,
see: Tietze, L. F.; Beifuss, U.; Ruther, M. J. Org. Chem. 1989, 54, 3120.
(18) The diastereomers of 10 could also be separated and shown to
converge to the same product upon dephosphonylation.
(19) Huffman, J. W.; Balke, W. H. J. Org. Chem. 1988, 53, 3828.
(20) Ngo, K.; Brown, G. D. Tetrahedron 1999, 55, 15109.
(21) Schriesheim, A.; Muller, R. J.; Rowe, C. A. J. Am. Chem. Soc. 1962,
84, 3164.
Detailed experimental procedures, spectral data, chroma-
tograms, and X-ray crystallography (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(22) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1964, 86, 1776.
Funding
́
(23) Crossley, S. W. M.; Barabe, F.; Shenvi, R. A. J. Am. Chem. Soc.
2014, 136, 16788.
Financial support for this work was provided by the NIH
(GM105766) and the NSF (GRFP to C.A.R.). Additional
support was provided by Eli Lilly, Novartis, Bristol-Myers
Squibb, Amgen, Boehringer-Ingelheim, the Sloan Foundation
and the Baxter Foundation.
(24) Nicolaou, K. C.; Harrison, S. T. Angew. Chem., Int. Ed. 2006, 45,
3256.
(25) Stereoselectivity was also poor and the remaining material could
not be identified. See ref 9f.
(26) Stereochemistry depicted assumes a thermally allowed 2-electron
suprafacial Wagner-Meerwein shift.
(27) Wood accesses a related amino alcohol (ref 9b) by epoxide-
opening with NaN3, followed by Na0 reduction, conditions which are
reported to reduce isonitriles.
Notes
The authors declare no competing financial interest.
(28) (a) Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 2092.
(b) Levin, V. V.; Dilman, A. D.; Belyakov, P. A.; Struchkova, M. I.;
Tartakovsky, V. A. J. Fluorine Chem. 2009, 130, 667.
(29) (a) Hofmann, A. W. Ann. Chem. 1868, 298, 202. (b) Sasaki, T.;
Eguchi, S.; Katada, T. J. Org. Chem. 1974, 39, 1239.
(30) Hertler, W. R.; Corey, E. J. J. Org. Chem. 1958, 23, 1221.
ACKNOWLEDGMENTS
■
We thank Dr. Milan Gembicky, Dr. Curtis Moore, and Professor
Arnold L. Rheingold for X-ray crystallographic analysis. We
thank Chris Vanderwal (UC Irvine) for open communication
about his ongoing work on the ICTs.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX