E
X. Tian et al.
Cluster
Synlett
the corresponding carbonyl hydrazide 18 in excellent yield
(Figure 4c). After treatment with NaNO2, the C-terminal
carbonyl azide 19 was obtained (Figure 4d), which was
treated with cyclo(KRGDf) for a second round of ligation
(Figure 4e), affording the homo-dual-ring branched cyclic
RGD peptide 20a. Finally, to facilitate future bioactivity
testing, an azide tag was added to the N-terminal amino
group of 20a by using N3(CH2)3CO2Su (Su = succinimidyl), to
give the azido-labeled branched cyclic RGD peptide 20.
In conclusion, we present here a peptide side-chain
benzyl ester that acts as a multifunctionalization precursor
that can be efficiently converted into side-chain acid, am-
ide, hydrazide, carbonyl azide, or thio ester groups in excel-
lent yields under mild conditions. The resulting side-chain
carbonyl azide and thio ester permit side-chain peptide li-
gation for branched peptide synthesis. With this strategy
and successive C-terminal and side-chain ligations, a series
of novel branched cyclic RGD peptides were prepared. Our
method provides a simplified approach for the synthesis of
branched cyclic peptides, with the advantage of selective
activation of side-chain acids without other protection on
the peptide chain. Furthermore, the convenient functional-
group conversion on side-chain Asp in excellent yields and
mild conditions makes this approach very robust in appli-
cation. This method will facilitate the development of
branched cyclic RGD peptides for therapeutic purposes.
(2) Yahi, N.; Sabatier, J. M.; Baghdiguian, S.; Gonzalez-Scarano, F.;
Fantini, J. J. Virol. 1995, 69, 320.
(3) Stigers, K. D.; Soth, M. J.; Nowick, J. S. Curr. Opin. Chem. Biol.
1999, 3, 714.
(4) Stavrakoudis, A.; Makropoulou, S.; Tsikaris, V.; Sakarellos-
Daitsiotis, M.; Sakarellos, C.; Demetropoulos, I. N. J. Pept. Sci.
2003, 9, 145.
(5) Gorse, G. J.; Keefer, M. C.; Belshe, R. B.; Matthews, T. J.; Forrest,
B. D.; Hsieh, R. H.; Koff, W. C.; Hanson, C. V.; Dolin, R.; Weinhold,
K. J.; Frey, S. E.; Ketter, N.; Fast, P. E. J. Infect. Dis. 1996, 173, 330.
(6) Wang, L. X. Curr. Opin. Drug Discovery Devel. 2006, 9, 194.
(7) Sheridan, J. M.; Hayes, G. M.; Austen, B. M. J. Pept. Sci. 1999, 5,
555.
(8) Neumiller, J. J.; Campbell, R. K. Ann. Pharmacother. 2009, 43,
1433.
(9) Mendive-Tapia, L.; Preciado, S.; Garcia, J.; Ramón, R.; Kielland,
N.; Albericio, F.; Lavilla, R. Nat. Commun. 2015, 6, 7160.
(10) Ruoslahti, E.; Pierschbacher, M. D. Science 1987, 238, 491.
(11) Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S. L.; Jonczyk,
A.; Kessler, H. J. Am. Chem. Soc. 1996, 118, 7461.
(12) Liu, Z.; Wang, F.; Chen, X. Drug Dev. Res. 2008, 69, 329.
(13) Dechantsreiter, M. A.; Planker, E.; Matha, B.; Lohof, E.;
Holzemann, G.; Jonczyk, A.; Goodman, S. L.; Kessler, H. J. Med.
Chem. 1999, 42, 3033.
(14) Oba, M.; Fukushima, S.; Kanayama, N.; Aoyagi, K.; Nishiyama,
N.; Koyama, H.; Kataoka, K. Bioconjugate Chem. 2007, 18, 1415.
(15) Lu, J.; Tian, X.-B.; Huang, W. Chin. Chem. Lett. 2015, 26, 946.
(16) Fang, G.-M.; Li, Y.-M.; Shen, F.; Huang, Y.-C.; Li, J.-B.; Lin, Y.; Cui,
H.-K.; Liu, L. Angew. Chem. Int. Ed. 2011, 50, 7645.
(17) Zheng, J.-S.; Tang, S.; Qi, Y.-K.; Wang, Z.-P.; Liu, L. Nat. Protoc.
2013, 8, 2483.
(18) Li, D.; Elbert, D. L. J. Pept. Res. 2002, 60, 300.
(19) Bloomberg, G. B.; Askin, D.; Gargaro, A. R.; Tanner, M. J. A. Tetra-
hedron Lett. 1993, 34, 4709.
(20) Zhou, C.; Li, Y.-H.; Jiang, Z.-H.; Ahn, K.-D.; Hu, T.-J.; Wang, Q.-H.;
Wang, C.-H. Chin. Chem. Lett. 2016, 27, 685.
(21) Pasunooti, K. K.; Yang, R.; Vedachalam, S.; Gorityala, B. K.; Liu,
C.-F.; Liu, X.-W. Bioorg. Med. Chem. Lett. 2009, 19, 6268.
(22) Side-Chain Peptide Hydrazide Synthesis and Successive Side-
Chain Ligation; General Procedure
Funding Information
This work was supported by the National Natural Science Foundation
of China (NNSFC, No. 21372238 and 21572244) and the Personalized
Medicines: Molecular Signature-Based Drug Discovery and Develop-
ment Strategic Priority Research Program of the Chinese Academy of
Sciences, Grant No. XDA12020311.
N
oaitn
a
l
N
a
utarl
Secince
F
o
u
n
d
oaitn
of
C
h
n
i
a
2(
1
3
7
2
2
3
8)
2(
1
5
7
2
2
4
4
P)ersonzaield
M
e
d
nc
i
es:
Moelcualr
gSinatuer-Based
Drug
Dscio
v
ery
a
n
d
D
e
v
oelp
m
e
nt
Srategci
P
ortri
y
Research
Program
of
hte
C
h
n
i
ese
A
c
a
d
e
m
y
of
Secinces
X(
D
A
1
2
0
2
0
3
1
1)
The side-chain benzyl ester peptide (2 mM) was treated with 5%
N2H4 in DMF at r.t. for 15–30 mins until conversion was com-
plete (HPLC). The product was purified by preparative HPLC,
and the resulting side-chain peptide hydrazide was then treated
with NaNO2 (10 equiv) in a pH 2 buffer of 6.0 M guanidine
hydrochloride and 0.2 M aq NaH2PO4 at –10 °C for 15 min to
give the corresponding carbonyl azide. MPAA (50 equiv) was
then added, the pH of the residue was adjusted to pH 5.5 with
1.0 M aq NaOH, and the mixture was kept at –10 °C for 15 min
to give the side-chain thio ester. A Cys-peptide (2 equiv) or an
amino-RGD peptide (5 equiv) was added then for side-chain
ligation at r.t. for 4–8 h. The ligation product of the branched
peptide was purified by preparative HPLC. For details and HPLC
and MS data, see the Supplementary Information.
Acknowledgements
We thank the mass spectrometry facility of the iHuman Institute for
providing us with the LC–MS and peptide-synthesizer instruments.
We thank Dr. Fei Zhao, Dr. Houchao Tao, Dr. Jingjing Shi, Dr Wei Yi,
and Dr. Eric H. Xu for their kind help in LC-MS detection.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
Notes and References
(23) Tian, X.; Li, J.; Huang, W. Tetrahedron Lett. 2016, 57, 4264.
(1) Robinson, J. A. J. Pept. Sci. 2013, 19, 127.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E