Journal of the American Chemical Society
Page 4 of 5
related to a charge injection barrier at the active layer/contact
1. (a) Guo, Y. Q.; Wang, Y. C.; Song, L. C.; Liu, F.; Wan, X. J.;
1
2
3
4
5
6
7
8
interface, see Figure S12 for details.
Zhang, H. T.; Chen, Y. S. Chem. Mater. 2017, 29, 3694; (b) Zhao,
W. C.; Li, S. S.; Yao, H. F.; Zhang, S. Q.; Zhang, Y.; Yang, B.;
Hou, J. H. J. Am. Chem. Soc. 2017, 139, 7148; (c) Cai, Y. H.; Huo,
L. J.; Sun, Y. M. Adv. Mater. 2017, 29.
2. (a) Sista, S.; Park, M.ꢀH.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W.
L.; Li, G.; Yang, Y. Adv. Mater. 2010, 22, 380; (b) Che, X.; Xiao,
X.; Zimmerman, J. D.; Fan, D.; Forrest, S. R. Adv. Energy Mater.
2014, 4, 1400568; (c) Meerheim, R.; Körner, C.; Oesen, B.; Leo,
K. Appl. Phys. Lett. 2016, 108, 103302.
In order to reveal the contribution of each subꢀcell to the photoꢀ
current, EQE measurements are conducted using 518 nm and 689
nm light bias as illustrated in Figure 4(d). The photoꢀcurrents
derived from the EQE spectra for the DCV5T-Me subꢀcell (10.0
mA cmꢀ2), and BDPꢀOMe subꢀcell (10.7 mA cmꢀ2) are found to
match, which results in a high jsc of 9.9 mA cmꢀ2 for the TSC.
This demonstrates that the jsc of a serial TSC is indeed controlled
by the subꢀcell with lower jsc value.12 It is also observed that a
wide spectral region from 500 to 900 nm is covered by the EQE
spectra with the maxima over 70%. This demonstrates an excelꢀ
lent complementary of the two absorbers.
9
3. Meerheim, R.; Körner, C.; Leo, K. Appl. Phys. Lett. 2014, 105,
063306.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
4. (a) Lin, L.ꢀY.; Chen, Y.ꢀH.; Huang, Z.ꢀY.; Lin, H.ꢀW.; Chou,
S.ꢀH.; Lin, F.; Chen, C.ꢀW.; Liu, Y.ꢀH.; Wong, K.ꢀT. J. Am. Chem.
Soc. 2011, 133, 15822; (b) Chen, Y.ꢀH.; Lin, L.ꢀY.; Lu, C.ꢀW.;
Lin, F.; Huang, Z.ꢀY.; Lin, H.ꢀW.; Wang, P.ꢀH.; Liu, Y.ꢀH.;
Wong, K.ꢀT.; Wen, J.; Miller, D. J.; Darling, S. B. J. Am. Chem.
Soc. 2012, 134, 13616; (c) Che, X.; Chung, C.ꢀL.; Liu, X.; Chou,
S.ꢀH.; Liu, Y.ꢀH.; Wong, K.ꢀT.; Forrest, S. R. Adv. Mater. 2016,
28, 8248.
5. (a) Fitzner, R.; Reinold, E.; Mishra, A.; MenaꢀOsteritz, E.;
Ziehlke, H.; Körner, C.; Leo, K.; Riede, M.; Weil, M.; Tsaryova,
O.; Weiß, A.; Uhrich, C.; Pfeiffer, M.; Bäuerle, P. Adv. Funct.
Mater. 2011, 21, 897; (b) Fitzner, R.; MenaꢀOsteritz, E.; Mishra,
A.; Schulz, G.; Reinold, E.; Weil, M.; Körner, C.; Ziehlke, H.;
Elschner, C.; Leo, K.; Riede, M.; Pfeiffer, M.; Uhrich, C.; Bäuerle,
P. J. Am. Chem. Soc. 2012, 134, 11064.
6. Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Chem. Soc. Rev. 2014, 43,
4778.
7. (a) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.;
Roncali, J. J. Mater. Chem. 2009, 19, 2298; (b) Li, T.ꢀY.; Meyer,
T.; Meerheim, R.; Hoppner, M.; Korner, C.; Vandewal, K.; Zeika,
O.; Leo, K. J. Mater. Chem. A 2017, 5, 10696.
8. (a) Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.;
Suzuki, K. J. Am. Chem. Soc. 2008, 130, 1550; (b) Umezawa, K.;
Matsui, A.; Nakamura, Y.; Citterio, D.; Suzuki, K. Chem. Eur. J.
2009, 15, 1096.
9. Choi, S.; Bouffard, J.; Kim, Y. Chem. Sci. 2014, 5, 751.
10. Holzmüller, F.; Gräßler, N.; Sedighi, M.; Müller, E.; Knupfer,
M.; Zeika, O.; Vandewal, K.; Koerner, C.; Leo, K. Org. Electron.
2017, 45, 198.
To conclude, we synthesized and studied three furan fused BODꢀ
IPYs with a CF3 group on the mesoꢀC for application in OSCs.
The methyl or methoxyl group on the peripheral phenyl rings
influences the packing behavior of these three donors significantly,
which results in different optical properties. Their absorption
bands cover a wide range from 500 to 950 nm in thin films. These
BODIPYs are examined in vacuumꢀprocessed single junction BHJ
OSCs, presenting PCEs from 2.5% to 6.1%. It is found that their
PV performance increases along with the destabilization of the
BODIPY’s LUMO energy level and the steric volume of the subꢀ
stituents on phenyl rings. The optimized BDP-OMe device yields
a high jsc of 13.3 mA cmꢀ2 and a Voc of 0.73 V. We further use
BDP-OMe as the long wavelength absorber in vacuumꢀprocessed
TSC combined with DCV5T-Me as complementary absorber
from the visible to the NIR region. The TSC shows a jsc of 9.9 mA
cmꢀ2 and a Voc of 1.70 V. With a reasonable FF of 59%, a high
PCE of 9.9% is achieved. This work demonstrates that BDP-OMe
is an outstanding NIR absorber for vacuumꢀdeposited organic PV
applications and further modifications may lead to more promisꢀ
ing BODIPY molecules for OSCs.
ASSOCIATED CONTENT
Supporting Information
Synthesis details, experimental procedures, device fabrication and
characterizations (PDF)
CIF file for BDP-H/Me/OMe (cif)
11. (a) Perez, M. D.; Borek, C.; Forrest, S. R.; Thompson, M. E. J.
Am. Chem. Soc. 2009, 131, 9281; (b) Chen, G., Sasabe, H.,
Igarashi, T., Hong, Z., Kido, J. J. Mater. Chem. A, 2015, 3, 14517.
12. Zhang, Q.; Wan, X.; Liu, F.; Kan, B.; Li, M.; Feng, H.; Zhang,
H.; Russell, T. P.; Chen, Y. Adv. Mater. 2016, 28, 7008.
AUTHOR INFORMATION
Corresponding Author
*zaifei.ma@iapp.de
*karl.leo@iapp.de
ORCID
Tianꢀyi Li: 0000ꢀ0003ꢀ4247ꢀ5840
Zaifei Ma: 0000ꢀ0002ꢀ3100ꢀ1570
AUTHOR CONTRIBUTION
†
T. Li and T. Meyer contributed equally to this work
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
T. Li thanks the China Scholarship Council (No.201406190164),
Z. Ma acknowledges Alexander von Humboldt Foundation and K.
Vandewal thanks the German Federal Ministry for Education and
Research (03IPT602X).
REFERENCES
4
ACS Paragon Plus Environment