106-69-4Relevant articles and documents
Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WOx/TiO2 Catalysts
He, Jiayue,Burt, Samuel P.,Ball, Madelyn,Zhao, Dongting,Hermans, Ive,Dumesic, James A.,Huber, George W.
, p. 1427 - 1439 (2018)
Cellulose-derived tetrahydrofuran-dimethanol (THFDM) can be converted over Pt-WOx/TiO2 catalysts to 1,6-hexanediol (1,6-HDO) with up to 70% yield. This reaction involves ring-opening of THFDM to 1,2,6-hexanetriol (HTO) and then hydrogenolysis of HTO to 1,6-HDO. Hydrogen atoms spill over from Pt sites onto WOx/TiO2 to reduce the W=O functional group and create Br?nsted acid sites. Similar catalytic activity for THFDM conversion can be been obtained with a physical mixture of Pt/TiO2 and WOx/TiO2 due to hydrogen spillover over spatially separate Pt and WOx when a reducible support (TiO2) is used.
Catalyst studies on the ring opening of tetrahydrofuran-dimethanol to 1,2,6-hexanetriol
Buntara, Teddy,Melián-Cabrera, Ignacio,Tan, Qiaohua,Fierro, José L.G.,Neurock, Matthew,De Vries, Johannes G.,Heeres, Hero J.
, p. 106 - 116 (2013)
The metal catalyzed hydrogenolysis of the biomass-derived THF-dimethanol to 1,2,6-hexanetriol using heterogeneous catalysts was investigated. Bimetallic Rh-Re catalysts (4 wt% Rh and a Re/Rh (mol. ratio of 0.5) on a silica support gave the best performance and 1,2,6-hexanetriol was obtained in 84% selectivity at 31% conversion (120 C, 80 bar, 4 h); the selectivity reaches a maximum of 92% at 80 C. The product distribution at prolonged reaction times or higher temperatures or both shows the formation of diols and mono-alcohols, indicating that the 1,2,6-hexanetriol is prone to subsequent hydrodeoxygenation reactions. Different silica supports were investigated and optimal results were obtained with an amorphous silica featuring an intermediate surface area and an average mesopore size of about 6 nm. TPR and XPS surface analysis support the presence of mixed Rh and Re particles. The redox Reδ+/ReTotal surface ratio correlates with the conversion in a volcano type dependency. Both gas phase as well as Rh200Re1OH cluster DFT calculations support an acid-metal bifunctional mechanism and explain the products distribution.
Process condition-based tuneable selective catalysis of hydroxymethylfurfural (HMF) hydrogenation reactions to aromatic, saturated cyclic and linear poly-functional alcohols over Ni-Ce/Al2O3
Grilc, M.,Likozar, B.,Pomeroy, Brett
supporting information, p. 7996 - 8002 (2021/11/01)
The related immense versatility of a ceria-promoted transition metal catalyst, utilized for the hydrogenation of 5-hydroxymethylfurfural (HMF), is demonstrated in this research study. We reveal a strategy to achieve considerable selective yields of three important high-value HMF-derived compounds by simply modifying the analysed reaction conditions and/or water-containing process medium.
Reductive conversion of 5-hydroxymethylfurfural to 1,2,6-hexanetriol in water solvent using supported Pt catalysts
Kataoka, Hiroto,Kosuge, Daichi,Ogura, Keiji,Ohyama, Junya,Satsuma, Atsushi
, p. 60 - 65 (2019/12/24)
One-pot conversion of biomass derived 5-hydroxymethylfurfural (HMF) to 1,2,6-hexanetriol (1,2,6-HT) in water solvent was performed using Pt catalysts supported on various acid-base metal oxides. Pt catalysts supported on hydrotalcite, MgO, and CeO2 showed better yield of 1,2,6-HT and 2,5-bis(hydroxymethyl)-tetrahydrofuran (BHF), while ring-rearranged cyclopentanol derivatives were predominant products on the other Pt catalysts. The product distribution with time course on Pt/hydrotalcite revealed that HMF is at first hydrogenated to BHF, then the following parallel reactions proceed; ring-rearrangement to cyclopentanol derivatives, ring-hydrogenation to BHF, and hydrogenolysis to 1,2,6-HT. When pure hydrotalcite, MgO and CeO2 were physically mixed with Pt/SiO2, the selectivity to 1,2,6-HT was almost zero or less than 10 %. It was suggested that the formation of 1,2,6-HT proceeds at metal-support interface. The effect of metal-support interface was examined by means of IR spectra of adsorbed methanol. It was indicated that both basic property of supports and surface monodentate alkoxide formation are essential for the production of 1,2,6-HT. The maximum yield of 1,2,6-HT (42 %) was obtained using Co-promoted Pt/CeO2 catalysts pre-reduced at 200 °C.
Interface synergy between IrOx and H-ZSM-5 in selective C–O hydrogenolysis of glycerol toward 1,3-propanediol
Wan, Xiaoyue,Zhang, Qi,Zhu, Mingming,Zhao, Yi,Liu, Yongmei,Zhou, Chunmei,Yang, Yanhui,Cao, Yong
, p. 339 - 350 (2019/07/03)
Site-selective deoxygenation of hydroxyl groups represents essential processes to access valuable functionalized bio-based compounds with industrial potential. One of the challenging tasks in this context is to convert biodiesel-derived glycerol in the presence of abundant water directly to 1,3-propanediol (1,3-PDO), a key component of the emerging polymer industry. Herein, a monometallic iridium supported on H-ZSM-5 in the absence of Re oxophilic metal oxides was prepared via grinding-assisted impregnation procedures and attempted as an effective and recyclable catalyst for the aqueous-phase selective hydrogenolysis of glycerol toward 1,3-PDO in the absence of acid additives. The results revealed the necessity to control the Ir domain dispersions, Ir0/Ir3+ ratio and the amounts of overall acid/Br?nsted acid sites. Activity depended linearly on the amount of overall and Br?nsted acid sites, and 1,3-PDO selectivity increased in the presence of Ir-induced Br?nsted acid sites, denoted as Ir-O(H)-H-ZSM-5. We speculate that Ir-O(H)-H-ZSM-5 are generated by the interfacial synergistic interaction between IrOx and H-ZSM-5 through hydrogen spillover and reverse hydrogen spillover according to the reported literatures. The reaction mechanism to elucidate the role of Ir-O(H)-H-ZSM-5 sites in glycerol hydrogenolysis was also postulated based on extensive characterization and catalytic reaction results.
Mechanistic study on -C-O- and -C-C- hydrogenolysis over Cu catalysts: Identification of reaction pathways and key intermediates
Kühne, Benjamin,Vogel, Herbert,Meusinger, Reinhard,Kunz, Sebastian,Kunz, Markwart
, p. 755 - 767 (2018/02/14)
Important petro-based polyol compounds with a longer carbon chain, such as oligohydroxy hexanes (e.g. 1,2- and 1,6-hexanediol or 1,2,6-hexanetriol), require at least three to four synthesis steps. Replacing this complex chemistry by a one-pot reaction via -C-O- bond cleavage from sugars would be a significant breakthrough for the use of renewable feedstocks. Cu is known for its dehydroxylation (deoxygenation) properties, yielding the desired products from sugars. In this joint research between academic and industrial chemistry, we have identified so far unknown intermediate products and present the first mechanism that explains the selective cleavage of OH-groups over copper. Strong interactions between polyols, unsaturated species and the copper surface are observed. Stable five-membered rings are formed with Cu via two vicinal OH-groups of the polyol reactant that makes these OH-groups inert to -C-O- bond cleavage. Adjacent free OH-groups in close proximity to the catalyst are dehydroxylated (deoxygenated). We further show that degradation of polyols not only occurs via commonly cited retro-aldol reactions. The formation of acid intermediates with subsequent decarboxylation is validated as a new pathway for -C-C- bond cleavage to short-chain polyols and CO2. The proposed mechanisms for -C-O- and -C-C- bond cleavage elucidate why hydrogenolysis reactions require high hydrogen pressure (up to 200 bar) to suppress the degradation of sugars and obtain high yields of deoxy C6 products. With this knowledge, the improvement of a standard commercial Cu-RANEY catalyst under optimized reaction conditions was shown. In contrast to alumina-supported Cu, the Cu-Al alloy in a RANEY-type catalyst shows selective -C-O- bond cleavage properties while maintaining the C6 carbon chain. These new insights into the transformation of sugars to value added commodities show the potential for new approaches in future biorefinery concepts.
Direct conversion of carbohydrates to diol by the combination of niobic acid and a hydrophobic ruthenium catalyst
Duan, Ying,Zhang, Jun,Li, Dongmi,Deng, Dongsheng,Ma, Lu-Fang,Yang, Yanliang
, p. 26487 - 26493 (2017/07/07)
Tetrahydro-2,5-furandimethanol (THFDM) was obtained directly from a wide variety of carbohydrates by the combination of niobic acid and a hydrophobic ruthenium catalyst. Fructose, glucose, and polysaccharides consisting of fructose or glucose could be converted to THFDM in one-step. The selectivity to THFDM was kept around 60% while the glucose conversion varied from 9% to 49%. The as-synthesized niobic acid was characterized by TEM, N2 adsorption/desorption, XRD, NH3-TPD and FT-IR spectra of adsorpted pyridine. The niobic acid was proved to have medium and strong acid sites with a high Br?nsted/Lewis ratio, which played a great role for keeping high THFDM selectivity using glucose as a substrate.
METHOD FOR PRODUCING ISOPROPANOL BY CATALYTIC CONVERSION OF CELLULOSE
-
Page/Page column 14, (2017/07/13)
This invention provides a method for producing isopropanol from cellulose, which is characterized by: cellulose is catalytically converted to isopropanol under existence of a Cu-Cr catalyst. In the method, the Cu-Cr catalyst contains an active phase of CuCr2O4 or further contains an active phase selected from a group consisting of CuO and Cr2O3; the mass ratio of cellulose and water is 15 wt% or below; and the temperature of catalytic reaction is 200-270℃.
SYNTHESIS OF R-GLUCOSIDES, SUGAR ALCOHOLS, REDUCED SUGAR ALCOHOLS, AND FURAN DERIVATIVES OF REDUCED SUGAR ALCOHOLS
-
, (2017/05/31)
Disclosed herein are methods for synthesizing 1,2,5,6-hexanetetrol (HTO), 1,6 hexanediol (HDO) and other reduced polyols from C5 and C6 sugar alcohols or R glycosides. The methods include contacting the sugar alcohol or R-glycoside with a copper catalyst, most desirably a Raney copper catalyst with hydrogen for a time, temperature and pressure sufficient to form reduced polyols having 2 to 3 fewer hydoxy groups than the starting material. When the starting compound is a C6 sugar alcohol such as sorbitol or R-glycoside of a C6 sugar such as methyl glucoside, the predominant product is HTO. The same catalyst can be used to further reduce the HTO to HDO.
POROUS SHAPED METAL-CARBON PRODUCTS
-
Paragraph 0228, (2017/05/17)
The present invention provides a porous metal-containing carbon-based material that is stable at high temperatures under aqueous conditions. The porous metal-containing carbon-based materials are particularly useful in catalytic applications. Also provided, are methods for making and using porous shaped metal-carbon products prepared from these materials.