15184-96-0Relevant articles and documents
Identification and biological evaluation of novel benzothiazole derivatives bearing a pyridine-semicarbazone moiety as apoptosis inducers via activation of procaspase-3 to caspase-3
Ma, Junjie,Ni, Xin,Gao, Yali,Huang, Kun,Liu, Jiaan,Wang, Yu,Chen, Roufen,Wang, Cuifang
, p. 465 - 477 (2019)
Three series of compounds were designed, synthesized and evaluated for their in vitro anticancer activity against a procaspase-3 over-expression cancer cell line (U937) and a procaspase-3 no-expression cancer cell line (MCF-7) to rule out off-target effects. Biological evaluation led to the identification of a series of benzothiazole derivatives bearing a pyridine-semicarbazone moiety, 8j and 8k, with promising anticancer activity and remarkable selectivity. Further mechanism studies revealed that compounds 8j and 8k could induce apoptosis of cancer cells by activating procaspase-3 to caspase-3, and compound 8k exhibited the strongest procaspase-3 activation activity. Structure-activity relationships (SARs) revealed that the presence of benzothiazole and an N,N,O-donor set is crucial for the anticancer activity and selectivity, and reducing the electron density of the N,N,O-donor set results in a dramatic decline in the anticancer activity and selectivity. Furthermore, toxicity evaluation (zebrafish) in vivo and metabolic stability studies (human, rat and mouse liver microsomes) were performed to provide reliable guidance for further PK/PD studies in vivo.
Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines
An, Duk Keun,Jaladi, Ashok Kumar,Kim, Hyun Tae,Yi, Jaeeun
, (2021/11/17)
Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.
Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application
Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong
, p. 2059 - 2067 (2021/09/02)
Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.
Method for preparing tertiary amine organic compound from photocatalytically decomposing substituted formamide
-
Paragraph 0043-0045, (2021/01/12)
The invention discloses a method for preparing a tertiary amine compound from aldehyde and substituted formamide under the action of a photocatalyst. The method is characterized in that the reaction can be performed only by illumination under the conditions of no hydrogen and no reducing agent. The method is suitable for various aldehydes including aromatic aldehydes, fatty aldehydes and the like,has the characteristics of few byproducts and high product yield, does not need to use hydrogen in the reaction, avoids the use of noble metal hydrogenation catalysts, and has obvious technical and economic effects and application prospects.
Synthesis of tertiary amines by direct Br?nsted acid catalyzed reductive amination
Hussein, Mohanad A.,Dinh, An H.,Huynh, Vien T.,Nguyen, Thanh Vinh
supporting information, p. 8691 - 8694 (2020/08/21)
Tertiary amines are ubiquitous and valuable compounds in synthetic chemistry, with a wide range of applications in organocatalysis, organometallic complexes, biological processes and pharmaceutical chemistry. One of the most frequently used pathways to synthesize tertiary amines is the reductive amination reaction of carbonyl compounds. Despite developments of numerous new reductive amination methods in the past few decades, this reaction generally requires non-atom-economic processes with harsh conditions and toxic transition-metal catalysts. Herein, we report simple yet practical protocols using triflic acid as a catalyst to efficiently promote the direct reductive amination reactions of carbonyl compounds on a broad range of substrates. Applications of this new method to generate valuable heterocyclic frameworks and polyamines are also included.
Semicarbazone derivative serving as caspase-3 activator and application thereof
-
Paragraph 0081-0084, (2019/02/10)
The invention provides semicarbazone derivative serving as a caspase-3 activator and application thereof. A structural general formula of the semicarbazone derivative or pharmaceutically acceptable salts of the semicarbazone derivative is shown as a formula I shown in the description. The semicarbazone derivative disclosed by the invention can be applied to preparing of medicine for treating or preventing cancer diseases and other hyperplastic diseases; thus, treating or preventing the cancer diseases and other hyperplastic diseases, and the semicarbazone derivative has an excellent application prospect in the aspect of developing antineoplastic medicine.
Semicarbazone derivatives bearing phenyl moiety: Synthesis, anticancer activity, cell cycle, apoptosis-inducing and metabolic stability study
Ma, Junjie,Ni, Xin,Gao, Yali,Huang, Kun,Wang, Yu,Liu, Jiaan,Gong, Guowei
, p. 351 - 360 (2019/05/07)
A series of semicarbazone derivatives bearing phenyl moiety were synthesized and evaluated for the vitro anticancer activities in four human cancer cell lines (human colon cancer (HT29), human neuroblastoma (SK-N-SH), human breast cancer (MDA-MB-231), and human gastric cancer (MKN45)). Biological evaluation led to the identification of 11q and 11s, which showed excellent anticancer activities against tested cancer cell lines with IC50 values ranging from 0.32 to 1.57μM, respectively, while exhibiting weak cytotoxicity on the normal cells (human umbilical vein endothelial cell (HUVEC)). Flow cytometric assay for cell cycle and apoptosis revealed that 11q and 11s caused an arrest in the Sub-G1 cell cycle and inhibited proliferation of cancer cells by inducing apoptosis in a dose-dependent manner. Further enzymatic assay suggested that 11q and 11s could significantly activated procaspase-3 to caspase-3. Metabolic stability study indicated that 11q and 11s showed moderate stability in vitro in human and rat liver microsomes. In view of promising pharmacological activities of 11q and 11s, which had emerged as the valuable lead for further development in the treatment for cancer.
Methyl-Selective α-Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMN-AZADO or 1-Me-AZADO)
Nakai, Satoru,Yatabe, Takafumi,Suzuki, Kosuke,Sasano, Yusuke,Iwabuchi, Yoshiharu,Hasegawa, Jun-ya,Mizuno, Noritaka,Yamaguchi, Kazuya
supporting information, p. 16651 - 16659 (2019/11/11)
Methyl-selective α-oxygenation of tertiary amines is a highly attractive approach for synthesizing formamides while preserving the amine substrate skeletons. Therefore, the development of efficient catalysts that can advance regioselective α-oxygenation at the N-methyl positions using molecular oxygen (O2) as the terminal oxidant is an important subject. In this study, we successfully developed a highly regioselective and efficient aerobic methyl-selective α-oxygenation of tertiary amines by employing a Cu/nitroxyl radical catalyst system. The use of moderately hindered nitroxyl radicals, such as 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO) and 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO), was very important to promote the oxygenation effectively mainly because these N-oxyls have longer life-times than less hindered N-oxyls. Various types of tertiary N-methylamines were selectively converted to the corresponding formamides. A plausible reaction mechanism is also discussed on the basis of experimental evidence, together with DFT calculations. The high regioselectivity of this catalyst system stems from steric restriction of the amine-N-oxyl interactions.
Electrochemical Dehydrogenative Imidation of N-Methyl-Substituted Benzylamines with Phthalimides for the Direct Synthesis of Phthalimide-Protected gem-Diamines
Lian, Fei,Sun, Caocao,Xu, Kun,Zeng, Chengchu
supporting information, p. 156 - 159 (2019/01/11)
A general and green electrochemical dehydrogenative method for the imidation of N-methyl benzylamines with phthalimides with excellent regioselectivities is reported for the first time. This operationally simple method offers a valuable tool to obtain str
COVALENT ORGANIC FRAMEWORK FOR ADSORBING SO2 GAS AND METHOD FOR PREPARING THE SAME
-
Paragraph 0098-0101, (2018/09/02)
The present invention refers to SO2 Gas adsorption number is suitable as a covalent organic frameworks structure (Covalent Organic Framework, COF) and manufacturing method relates to search, imide structure has backbone of the present invention covalent organic frameworks, SO2 6 Frame of network architecture having a polar group having reactive porous are disclosed. (by machine translation)