Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7291-01-2

Post Buying Request

7291-01-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7291-01-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 7291-01-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,2,9 and 1 respectively; the second part has 2 digits, 0 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 7291-01:
(6*7)+(5*2)+(4*9)+(3*1)+(2*0)+(1*1)=92
92 % 10 = 2
So 7291-01-2 is a valid CAS Registry Number.
InChI:InChI=1/C9H10N2O3/c1-10(2)9(12)7-3-5-8(6-4-7)11(13)14/h3-6H,1-2H3

7291-01-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N,N-dimethyl-4-nitrobenzamide

1.2 Other means of identification

Product number -
Other names N,N-dimethyl-p-nitrobenzoamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7291-01-2 SDS

7291-01-2Relevant articles and documents

One-pot synthesis of a highly disperse core-shell CuO-alginate nanocomposite and the investigation of its antibacterial and catalytic properties

Habibi, Hassan,Mansourinejhad, Sanam,Saberi, Dariush,Shadi, Ahmad

, p. 199 - 211 (2021/12/30)

In this study, sodium alginate was extracted from Sargassum algae, collected from coastal waters of Bushehr, Persian Gulf, Iran and used as a stabilizing and wrapping agent for CuO nanoparticles. The synthesized nanocomposite was characterized by some spectroscopic and microscopic techniques, such as IR, XRD, Uv-vis, BET, BJH, zeta potential, SEM, TEM, HR-TEM, and XPS. The antibacterial effects of the CuO-alginate nanocomposite against some bacteria, isolated from a burn wound, were evaluated. The results showed that this nanocomposite had better antibacterial effects than its components onPseudomonas aeruginosaATCC 27853,Staphylococcus aureusATCC 12600,Streptococcus pyogenesATCC 19615, andStaphylococcus epidermidisATCC 49461. Among these,Staphylococcus aureusATCC 12600 was the most sensitive one to this nanocomposite, with the lowest minimum inhibitory concentration (2.08 mg mL?1) observed. Moreover, the synthesized nanocomposite showed good catalytic activity in the oxidative coupling of carboxylic acids withN,N-dialkylformamides toward the synthesis of amides.

Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines

Yi, Jaeeun,Kim, Hyun Tae,Jaladi, Ashok Kumar,An, Duk Keun

supporting information, p. 129 - 132 (2021/11/17)

Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.

Palladium-Catalyzed Aminocarbonylation of Aryl Halides with N,N-Dialkylformamide Acetals

Hirata, Shuichi,Osako, Takao,Uozumi, Yasuhiro

, (2021/10/05)

We developed a protocol for the palladium-catalyzed aminocarbonylation of aryl halides using less-toxic formamide acetals as bench-stable aminocarbonyl sources under neutral conditions. Various aryl (including heteroaryl) halides reacted with N,N-dialkylformamide acetals in the presence of a catalytic amount of tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct and xantphos to give the corresponding aromatic carboxamides at 90–140 °C without any activating agents or bases in up to quantitative chemical yield. This protocol was applied to aryl bromides, aryl iodides, and trifluoromethanesulfonic acid, as well as to relatively less-reactive aryl chlorides. A wide range of functionalities on the aromatic ring of the substrates were tolerated under the aminocarbonylation conditions. The catalytic aminocarbonylation was used to prepare the insect repellent N,N-diethyl-3-methylbenzamide as well as a synthetic intermediate of the dihydrofolate reductase inhibitor triazinate.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7291-01-2