Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2177-86-8

Post Buying Request

2177-86-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2177-86-8 Usage

General Description

Methyl 2-methyloctanoate is a chemical compound with the molecular formula C9H18O2. It is a colorless liquid with a fruity odor and is commonly used as a flavor and fragrance ingredient in the food and beverage industry. It is also used as a chemical intermediate in the production of various other organic compounds. Methyl 2-methyloctanoate is known for its pleasant, fruity scent, which makes it a popular choice for adding a sweet and fruity aroma to products such as perfumes, soaps, and lotions. Additionally, it is used in the synthesis of pharmaceutical drugs and agrochemicals.

Check Digit Verification of cas no

The CAS Registry Mumber 2177-86-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,1,7 and 7 respectively; the second part has 2 digits, 8 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 2177-86:
(6*2)+(5*1)+(4*7)+(3*7)+(2*8)+(1*6)=88
88 % 10 = 8
So 2177-86-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H20O2/c1-9(2)7-5-4-6-8-10(11)12-3/h9H,4-8H2,1-3H3

2177-86-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name METHYL 2-METHYLOCTANOATE

1.2 Other means of identification

Product number -
Other names 2-Methyl-octansaeure-methylester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2177-86-8 SDS

2177-86-8Relevant articles and documents

Sterically hindered (pyridyl)benzamidine palladium(II) complexes: Syntheses, structural studies, and applications as catalysts in the methoxycarbonylation of olefins

Akiri, Saphan O.,Ojwach, Stephen O.

, (2021/09/09)

Reactions of ligands (E)-N′-(2,6-diisopropylphenyl)-N-(4-methylpyridin-2-yl)benzimidamide (L1), (E)-N′-(2,6-diisopropylphenyl)-N-(6-methylpyridin-2-yl)benzimidamide (L2), (E)-N′-(2,6-dimethylphenyl)-N-(6-methylpyridin-2-yl)benzimidamide (L3), (E)-N′-(2,6-dimethylphenyl)-N-(4-methylpyridin-2-yl)benzimidamide (L4), and (E)-N-(6-methylpyridin-2-yl)-N′-phenylbenzimidamide (L5) with [Pd(NCMe)2Cl2] furnished the corresponding palladium(II) precatalysts (Pd1–Pd5), in good yields. Molecular structures of Pd2 and Pd3 revealed that the ligands coordinate in a N^N bidentate mode to afford square planar compounds. Activation of the palladium(II) complexes with para-tolyl sulfonic acid (PTSA) afforded active catalysts in the methoxycarbonylation of a number of alkene. The resultant catalytic activities were controlled by the both the complex structure and alkene substrate. While aliphatic substrates favored the formation of linear esters (>70%), styrene substrate resulted in the formation of predominantly branched esters of up to 91%.

Palladium(II) complexes of (pyridyl)imine ligands as catalysts for the methoxycarbonylation of olefins

Zulu, Zethu,Nyamato, George S.,Tshabalala, Thandeka A.,Ojwach, Stephen O.

, (2019/12/11)

Reactions of 2-methoxy-N-((pyridin-2-yl)methylene)ethanamine (L1), 2-((pyridin-2-yl)methyleneamino)ethanol (L2) and 3-methoxy-N-((pyridin-2-yl)methylene)propan-1-amine (L3) ligands with either [PdCl2(COD)] or [PdCl(Me)(COD)] produced the corresponding monometallic complexes [PdCl2(L1)] (1), [PdClMe(L1)] (2), [PdCl2(L2)] (3) and [PdCl2(L3)] (4). The solid state structure of complex 1 confirmed the bidentate coordination mode of L1, giving a distorted square planar geometry. All the complexes (1–4) formed active catalysts for the methoxycarbonylation of higher olefins to give linear and branched esters. The catalytic behavior of complexes 1–4 were influenced by both the complex structure and olefin chain length.

A general platinum-catalyzed alkoxycarbonylation of olefins

Beller, Matthias,Dühren, Ricarda,Franke, Robert,Ge, Yao,Huang, Weiheng,Jackstell, Ralf,Liu, Jiawang,Neumann, Helfried,Schneider, Carolin,Yang, Ji

supporting information, p. 5235 - 5238 (2020/07/30)

Hydroxy- and alkoxycarbonylation reactions constitute important industrial processes in homogeneous catalysis. Nowadays, palladium complexes constitute state-of-the-art catalysts for these transformations. Herein, we report the first efficient platinum-catalysed alkoxycarbonylations of olefins including sterically hindered and functionalized ones. This atom-efficient catalytic transformation provides straightforward access to a variety of valuable esters in good to excellent yields and often with high selectivities. In kinetic experiments the activities of Pd- and Pt-based catalysts were compared. Even at low catalyst loading, Pt shows high catalytic activity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2177-86-8