Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4013-34-7

Post Buying Request

4013-34-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4013-34-7 Usage

Synthesis Reference(s)

Tetrahedron Letters, 19, p. 1357, 1978 DOI: 10.1016/S0040-4039(01)94544-7

Check Digit Verification of cas no

The CAS Registry Mumber 4013-34-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,0,1 and 3 respectively; the second part has 2 digits, 3 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 4013-34:
(6*4)+(5*0)+(4*1)+(3*3)+(2*3)+(1*4)=47
47 % 10 = 7
So 4013-34-7 is a valid CAS Registry Number.
InChI:InChI=1/C9H12O/c1-8(10-2)9-6-4-3-5-7-9/h3-8H,1-2H3

4013-34-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-phenyl-2-oxabutane

1.2 Other means of identification

Product number -
Other names 1-phenylethyl methyl ether

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4013-34-7 SDS

4013-34-7Relevant articles and documents

Regioselective N-Functionalization of Tautomerizable Heterocycles through Methyl Trifluoromethanesulfonate-Catalyzed Substitution of Alcohols and Alkyl Group Migrations

Biswas, Srijit,Biswas, Subrata,Duari, Surajit,Elsharif, Asma M.,Maity, Srabani,Mishra, Abhishek Kumar,Morgon, Nelson H.,Roy, Arnab,de Souza, Aguinaldo R.

, (2022/01/20)

A catalytic synthetic strategy has been developed combining two protocols, such as, direct nucleophilic substitution of alcohols followed by X- to N- alkyl group migration (X=O, S) to access N-functionalized benzoxazolones, benzothiazolethiones, indolinone, benzoimidazolethiones, and pyridinones derivatives. Methyl trifluoromethanesulfonate (MeOTf) was found to catalyze the reaction, which revealed the catalytic property of MeOTf. A mechanism was established through experiments as well as DFT calculations wherein the ?OH group of alcohols were converted to the corresponding ?OMe groups and in situ generated TfOH. The ?OMe groups produced underwent TfOH catalyzed ?X alkylation (X=O, S) of the heterocycles followed by ?X- to ?N-alkyl group migrations in a single step. (Figure presented.).

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

Hegg, Eric L.,Jackson, James E.,Klinger, Grace E.,Saffron, Christopher M.,Zhou, Yuting

supporting information, p. 4037 - 4050 (2020/03/10)

We present here detailed mechanistic studies of electrocatalytic hydrogenation (ECH) in aqueous solution over skeletal nickel cathodes to probe the various paths of reductive catalytic C-O bond cleavage among functionalized aryl ethers relevant to energy science. Heterogeneous catalytic hydrogenolysis of aryl ethers is important both in hydrodeoxygenation of fossil fuels and in upgrading of lignin from biomass. The presence or absence of simple functionalities such as carbonyl, hydroxyl, methyl, or methoxyl groups is known to cause dramatic shifts in reactivity and cleavage selectivity between sp3 C-O and sp2 C-O bonds. Specifically, reported hydrogenolysis studies with Ni and other catalysts have hinted at different cleavage mechanisms for the C-O ether bonds in α-keto and α-hydroxy β-O-4 type aryl ether linkages of lignin. Our new rate, selectivity, and isotopic labeling results from ECH reactions confirm that these aryl ethers undergo C-O cleavage via distinct paths. For the simple 2-phenoxy-1-phenylethane or its alcohol congener, 2-phenoxy-1-phenylethanol, the benzylic site is activated via Ni C-H insertion, followed by beta elimination of the phenoxide leaving group. But in the case of the ketone, 2-phenoxyacetophenone, the polarized carbonyl πsystem apparently binds directly with the electron rich Ni cathode surface without breaking the aromaticity of the neighboring phenyl ring, leading to rapid cleavage. Substituent steric and electronic perturbations across a broad range of β-O-4 type ethers create a hierarchy of cleavage rates that supports these mechanistic ideas while offering guidance to allow rational design of the catalytic method. On the basis of the new insights, the usage of cosolvent acetone is shown to enable control of product selectivity.

Auto-Tandem Catalysis with Frustrated Lewis Pairs for Reductive Etherification of Aldehydes and Ketones

Bakos, Mária,Gy?m?re, ádám,Domján, Attila,Soós, Tibor

supporting information, p. 5217 - 5221 (2017/04/27)

Herein we report that a single frustrated Lewis pair (FLP) catalyst can promote the reductive etherification of aldehydes and ketones. The reaction does not require an exogenous acid catalyst, but the combined action of FLP on H2, R-OH or H2O generates the required Br?nsted acid in a reversible, “turn on” manner. The method is not only a complementary metal-free reductive etherification, but also a niche procedure for ethers that would be either synthetically inconvenient or even intractable to access by alternative synthetic protocols.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4013-34-7