591-19-5Relevant articles and documents
Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes
Cui, Xueliang,Long, Yu,Zhou, Xia,Yu, Guiqin,Yang, Jin,Yuan, Man,Ma, Jiantai,Dong, Zhengping
, p. 1121 - 1130 (2018)
Palladium (Pd)-based catalysts with maximum utilization of the Pd atoms are attractive for hydrogenation reactions and conserving Pd resources. Herein, the highly dispersed Ni nanoparticle (NP)-modified mesoporous N-doped carbon (Ni/mCN) was successfully prepared by pyrolyzing a mixture of polyacrylonitrile, melamine and Ni(NO3)2·6H2O. Then, the resulting Ni/mCN material with highly dispersed metallic Ni NPs was treated with Pd(AcO)2, and Pd2+ was spontaneously reduced to metallic Pd by the Ni NPs, affording the PdNi NP-based catalyst (PdNi/mCN). The spontaneous reduction process deposits most of the Pd atoms on the surface of the Ni NPs, thus allowing for the maximum utilization of the noble metal Pd. The prepared mesoporous N-doped carbon support can not only provide more surface area to adsorb reaction substrates, but also enhances the accessibility of the active sites of PdNi NPs. The prepared PdNi/mCN nanocatalyst shows a very high catalytic activity for the transfer hydrogenation of nitroarenes using formic acid as the reductant under ambient conditions in aqueous solution, as compared to other Pd-based catalysts, probably because of the highly dispersed PdNi NPs and the maximum utilization of the Pd atoms, as well as the superior structure of mCN. Moreover, the PdNi/mCN nanocatalyst exhibits excellent recyclability and reusability, and the catalytic activity does not obviously decrease after ten reaction cycles. Therefore, we believe that this study should open a new frontier in the preparation of porous N-doped carbon-supported catalysts with maximum utilization of the noble metals for green and sustainable catalysis.
In situ-formed cobalt embedded into N-doped carbon as highly efficient and selective catalysts for the hydrogenation of halogenated nitrobenzenes under mild conditions
Cao, Yueling,Liu, Kangkai,Wu, Chen,Zhang, Hepeng,Zhang, Qiuyu
, (2020)
Inhibiting the dehalogenation is the main challenge when halogenated nitrobenzenes are hydrogenated using H2 as hydrogen source by heterogeneous catalysis. Herein, the earth-abundant cobalt embedded into N-doped carbon (Co@CN) catalysts were fabricated via one-pot pyrolysis of tannic acid, Co(NO3)2·6H2O and melamine, which can function as a highly efficient non-noble-metal-based heterogeneous catalyst for selective hydrogenation of halogenated nitrobenzenes. Chloroanilines, bromoanilines, and iodoanilines, including all regioisomers, could be obtained with excellent selectivity (typically >99 %) at 60 °C under 1 MPa H2, at almost complete conversion of the substrates. Additionally, Co@CN demonstrated excellent catalytic stability and could be reused at least five times without obvious loss of catalytic activity and selectivity. Therefore, the Co@CN catalyst exhibits vast potential for future industrial application in the selective hydrogenation of halogenated nitrobenzenes.
A robust core-shell nanostructured nickel-iron alloy@nitrogen-containing carbon catalyst for the highly efficient hydrogenation of nitroarenes
Zhang, Yaowen,Liu, Chunling,Fan, Guoli,Yang, Lan,Li, Feng
, p. 13668 - 13679 (2018)
Currently, the catalytic selective hydrogenation of nitroarenes to produce aromatic amines is one of the most important key reactions in many fine chemical processes. In particular, non-noble-metal-catalyzed hydrogenation of nitroarenes represents more sustainable chemical processes. Here, we report a new robust and recyclable core-shell nanostructured nickel-iron alloy@nitrogen-containing carbon (NiFe@NC) catalyst and the beneficial effect of alloying Ni with Fe for the above reaction. The key to this synthetic strategy was thermally transforming the Ni-Fe layered double hydroxide (NiFe-LDH)/melamine mixture to form a fixed NiFe@NC nanostructure. A series of characterization results revealed the formation of NiFe alloy nanoparticles (NPs) coated with the NC overlayer. The as-fabricated NiFe@NC catalyst with a Ni/Fe atomic ratio of 3.0 exhibited superior activity for the reduction of the nitro group in o-chloronitrobenzene, with a 99.5% yield of o-chloroaniline under mild reaction conditions. The initial reaction rate over the catalyst was nearly three times that over the monometallic Ni@NC counterpart, and even one-order magnitude higher than that over pristine NiFe-LDH-derived NiFe alloy NPs. The extraordinary activity of NiFe@NC was reasonably attributed to the unique core-shell nanostructure, where both the NiFe alloy core and the NC overlayer shell could construct a significant promotional effect, being beneficial for the selective cleavage of the N-O bond. Recycling experiments indicated that the catalyst could be easily separated and recovered under an external magnetic field and experienced excellent recyclability during seventeen cycles without an obvious loss of catalytic activity. Furthermore, the present catalyst was also highly active for the chemoselective hydrogenation of other substituted nitroarenes bearing different functional groups to the corresponding anilines.
Well-controlled layer-by-layer assembly of carbon dot/CdS heterojunctions for efficient visible-light-driven photocatalysis
Chai, Na-Na,Wang, Hang-Xing,Hu, Chen-Xia,Wang, Qiang,Zhang, Hao-Li
, p. 16613 - 16620 (2015)
Fluorescent carbon dots have attracted great attention, but their application in photocatalysis has not been well explored. Herein we report a facile layer-by-layer method to fabricate uniform C dot/CdS heterojunction films via an electrophoretic and sequ
Robust and economic reduction protocol employing immensely stable and leach-proof magnetically separable nanocomposites
Goyal, Ankita,Singhal, Sonal
, p. 91275 - 91294 (2016)
Magnetically recoverable nanocomposites i.e. metal loaded over modified ferrite nanoparticles have been synthesized via a facile three step pathway. Modification of ferrite nanoparticles which serve as the core has been achieved using dopamine hydrogen chloride. Owing to this, introduction of terminal amine groups on the surface of ferrite nanoparticles takes place which provides binding sites for the stabilization of metal nanoparticles providing leach-proof nanocomposites. The synthesized nanocomposites have been characterized using various characterization techniques. Substantiation of the modification of the pristine magnetic ferrite nano particles has been done from the emergence of strong stretching vibration bands of N-H and O-H in the range of 3200-3400 cm-1, N-H stretching band in the range of 1630-1650 cm-1, C-C vibrations of the benzene ring in the range of 1480-1500 cm-1 and C-O stretching vibrations in the range of 1070-1100 cm-1. In the XRD patterns additional peaks corresponding to loaded metals (Cu and Ag) along with peaks corresponding to spinel ferrites have been observed confirming the successful formation of the composite. EDS patterns and FE-SEM elemental mapping confirmed the purity of the samples by displaying the absence of any impurity. Elemental mapping also confirmed the uniform binding of the loaded metals over the surface of modified ferrite nanoparticles. Catalytic efficiency of the synthesized nanocomposites has been explored for the reduction of nitroarenes. Both the Cu and Ag loaded samples exhibited excellent activity and efficient recyclability for the reduction of nitroarenes in the presence of NaBH4 as a reducing agent.
In situcreation of multi-metallic species inside porous silicate materials with tunable catalytic properties
Liu, Yang-Yang,Wu, Chuan-De,Zhan, Guo-Peng
supporting information, p. 6185 - 6188 (2021/06/30)
Porous metal silicate (PMS) material PMS-11, consisting of uniformly distributed multi-metallic species inside the pores, is synthesized by using a discrete multi-metal coordination complex as the template, demonstrating high catalytic activity and selectivity in hydrogenation of halogenated nitrobenzenes by synergistically activating different reactant moleculesviaNi and Co transition metal centers, while GdIIILewis acid sites play a role in tuning the catalytic properties.
Rhodium nanoparticles supported on 2-(aminomethyl)phenols-modified Fe3O4 spheres as a magnetically recoverable catalyst for reduction of nitroarenes and the degradation of dyes in water
Chen, Tian,Chen, Zhangpei,Hu, Jianshe,Lv, Kexin,Reheman, Aikebaier,Wang, Gongshu
, (2021/06/18)
A magnetic nanostructured catalyst (Fe3O4@SiO2-Amp-Rh) modified with 2-(aminomethyl)phenols (Amp) was designed and prepared, which is used to catalyze the reduction of aromatic nitro compounds into corresponding amines and the degradation of dyes. The 2-aminomethylphenol motif plays a vital role in the immobilization of rhodium nanoparticles to offer extraordinary stability, which has been characterized by using various techniques, including transmission electron microscopy (TEM), thermal gravimetric analyzer (TGA), X-Ray Diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). A variety of nitroaromatic derivatives have been reduced to the corresponding anilines in water with up to yields of 99% within 1?h at room temperature. In addition, the catalyst system is effective in catalyzing the reduction of toxic pollutant 4-nitrophenol and the degradation of MO, MB and RhB dyes. Importantly, this catalyst Fe3O4@SiO2-Amp-Rh can be easily recovered by an external magnetic field because of the presence of magnetic core of Fe3O4, and the activity of Fe3O4@SiO2-Amp-Rh does not decrease significantly after 7 times’ recycling, which indicates that the catalyst performed high reactivity as well as stability. Graphical abstract: [Figure not available: see fulltext.]
Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co-N/C catalyst
Dai, Yuyu,Li, Xiaoqing,Wang, Likai,Xu, Xiangsheng
, p. 22908 - 22914 (2021/12/24)
The direct hydrogenation reduction of aromatic nitro compounds to aromatic amines with non-noble metals is an attractive area. Herein, the pyrolysis of Co(2-methylimidazole)2 metal-organic framework successfully produces a magnetic Co-N/C nanocomposite, which exhibits a porous structure with a high specific area and uniform Co nanoparticle distribution in nitrogen-doped graphite. In addition, the Co-N/C catalysts possess high cobalt content (23%) with highly active β-Co as the main existing form and high nitrogen content (3%). These interesting characteristics endow the Co-N/C nanocomposite with excellent catalytic activity for the hydrogenation reduction of nitro compounds under mild conditions. In addition, the obtained Co-N/C nanocomposites possess a broad substrate scope and good cycle stability for the reduction of halogen-substituted or carbonyl substituted phenyl nitrates. This journal is
NaI/PPh3-Mediated Photochemical Reduction and Amination of Nitroarenes
Qu, Zhonghua,Chen, Xing,Zhong, Shuai,Deng, Guo-Jun,Huang, Huawen
supporting information, p. 5349 - 5353 (2021/07/21)
A mild transition-metal- and photosensitizer-free photoredox system based on the combination of NaI and PPh3 was found to enable highly selective reduction of nitroarenes. This protocol tolerates a broad range of reducible functional groups such as halogen (Cl, Br, and even I), aldehyde, ketone, carboxyl, and cyano. Moreover, the photoredox catalysis with NaI and stoichiometric PPh3 provides also an alternative entry to Cadogan-type reductive amination when o-nitrobiarenes were used.
Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications
Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming
supporting information, p. 1618 - 1629 (2021/01/25)
Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.