Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6624-53-9

Post Buying Request

6624-53-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6624-53-9 Usage

Appearance

Pale yellow crystalline solid

Solubility

Insoluble in water, soluble in organic solvents

Uses

Production of fluorescent dyes
Synthesis of pharmaceuticals
Intermediate in organic reactions
Building block for chiral polymer ligands
Precursor in the synthesis of chiral nematic liquid crystals

Potential properties

Anti-inflammatory
Antioxidant

Check Digit Verification of cas no

The CAS Registry Mumber 6624-53-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,6,2 and 4 respectively; the second part has 2 digits, 5 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 6624-53:
(6*6)+(5*6)+(4*2)+(3*4)+(2*5)+(1*3)=99
99 % 10 = 9
So 6624-53-9 is a valid CAS Registry Number.

6624-53-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name (Z)-4-Nitrostilbene

1.2 Other means of identification

Product number -
Other names 4-nitro-stilben

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6624-53-9 SDS

6624-53-9Relevant articles and documents

Palladium supported aminobenzamide modified silica coated superparamagnetic iron oxide as an applicable nanocatalyst for Heck cross-coupling reaction

Fatahi, Yousef,Ghaempanah, Aram,Ma?mani, Leila,Mahdavi, Mohammad,Bahadorikhalili, Saeed

, (2021/01/26)

An applicable palladium-based nanocatalyst was constructed through the immobilization of palladium onto 2-aminobenzamide functionalized silica coated superparamagnetic iron oxide magnetic nanoparticles. The nanocatalyst (named as Pd@ABA@SPIONs@SiO2) was characterized by several characterization methods, including scanning electron microscope (SEM), transmission electron microscopy (TEM), vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), and X-ray photoelectron spectroscopy (XPS) analyses. Microscopy results showed that the nanoparticles are spherical in shape with 20–25 nm size. The size of the nanoparticles was confirmed by the DLS method. The superparamagnetic nature of the catalyst was confirmed by the VSM method. The successful functionalization of SPIONs@SiO2 was confirmed by FT-IR spectroscopy. The presence of palladium in the structure of the nanocatalyst was illustrated by XRD and EDS analysis. Also using XPS technique, the oxidation state of palladium in Pd@ABA@SPIONs@SiO2 was determined zero before and after the catalyst was applied in Mizoroki-Heck reaction. Several aryl halides and alkenes were reacted in the presence of the nanocatalyst and formed the corresponding products in high isolated yields. The nanocatalyst showed very good reusability and did not decrease its activity after 10 sequential runs. Density functional theory (DFT) calculation was performed to provide a mechanism for the reaction and confirmed the role of the palladium catalyst in the reaction function.

Green and sustainable palladium nanomagnetic catalyst stabilized by glucosamine-functionalized Fe3O4@SiO2 nanoparticles for Suzuki and Heck reactions

Eslahi, Hassan,Sardarian, Ali Reza,Esmaeilpour, Mohsen

, (2021/04/26)

A novel magnetic and heterogeneous palladium-based catalyst stabilized by glucosamine-functionalized magnetic Fe3O4@SiO2 nanoparticle was synthesized. The strategy relies on the covalently bonding of glucosamine to cyanuric chloride-functionalized magnetic nanoparticles followed by complexation with palladium. The structure of magnetic nanocatalyst was fully determined by FT-IR, XRD, DLS, FE-SEM, TEM, ICP, UV-Vis, TGA, VSM, and EDX. The obtained results confirmed that the palladium nanoparticles stabilized by glucosamine immobilized onto the magnetic support exhibited high activity in cross-coupling reactions of Suzuki-Miyaura and Mizoroki-Heck. Various aryl halides were coupled with arylboronic acid (Suzuki cross-coupling reaction) and olefins (Heck reactions) under the green conditions to provide corresponding products in high to excellent yields. Interestingly, the catalyst can be easily isolated from the reaction media by magnetic decantation and can subsequently be applied for consecutive reaction cycles (at least seven times) with no notable reduction in the catalytic activity.

NiFe2O4@SiO2@ZrO2/SO42-/Cu/Co nanoparticles: A novel, efficient, magnetically recyclable and bimetallic catalyst for Pd-free Suzuki, Heck and C-N cross-coupling reactions in aqueous media

Alavi G., Seyyedeh Ameneh,Nasseri, Mohammad Ali,Kazemnejadi, Milad,Allahresani, Ali,Hussainzadeh, Mahdi

, p. 7741 - 7757 (2021/05/13)

The novel heterogeneous bimetallic nanoparticles of Cu-Co were synthesized based on magnetic nanoparticles, and the magnetic nanocatalyst was characterized by XRD, FE-SEM, EDX mapping, BET, TEM, HRTEM, FTIR, TGA, and VSM. This catalyst was successfully applied as a recyclable magnetically catalyst in Heck, Suzuki, and C-N cross-coupling reactions with various aryl halides (iodides, bromides, and chlorides as challengeable substrates), with olefins, phenylboronic acid, and amines, respectively. We considered the rise of synergetic effects from the different Lewis acid and Br?nsted acid sites present in the catalyst. The catalyst was synthesized with cheap, available materials and a simple synthesis method. The catalyst can be separated easily using an external magnet. It was recycled for more than ten runs without a sensible loss of its catalytic activity, and no significant leaching of the Cu and Co quantity was observed. The significant benefits of the method are high-level generality, simple operation, and there are no heavy metals and toxic solvents. This is a quick, easy, efficacious and environmentally friendly protocol, and no by-products are formed in the reaction. These features make it an appropriate practical alternative protocol. In comparison with recent works, the other advantage of this catalyst is the synthesis of a wide variety of C-C and C-N bond derivatives (more than 40 derivatives). The other significant advantage is the low temperature of the reaction and the use of the least possible amount of the catalyst (0.003 g). The efficiency was good to excellent and the catalyst selectivity has been high. We aspire that our study inspires more interest to design novel catalysts based on using low-cost metal ions (such as cobalt and copper) in the cross-coupling reactions. This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6624-53-9