Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6975-29-7

Post Buying Request

6975-29-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6975-29-7 Usage

Synthesis Reference(s)

Canadian Journal of Chemistry, 50, p. 1233, 1972 DOI: 10.1139/v72-193

Check Digit Verification of cas no

The CAS Registry Mumber 6975-29-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,9,7 and 5 respectively; the second part has 2 digits, 2 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 6975-29:
(6*6)+(5*9)+(4*7)+(3*5)+(2*2)+(1*9)=137
137 % 10 = 7
So 6975-29-7 is a valid CAS Registry Number.

6975-29-7 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (B21795)  2',4'-Dichloroacetanilide, 98%   

  • 6975-29-7

  • 2.5g

  • 188.0CNY

  • Detail
  • Alfa Aesar

  • (B21795)  2',4'-Dichloroacetanilide, 98%   

  • 6975-29-7

  • 10g

  • 575.0CNY

  • Detail

6975-29-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(2,4-dichlorophenyl)acetamide

1.2 Other means of identification

Product number -
Other names Acet-<2,4-dichlor>-anilid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6975-29-7 SDS

6975-29-7Relevant articles and documents

Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water

Zeynizadeh, Behzad,Mohammad Aminzadeh, Farkhondeh,Mousavi, Hossein

, p. 3289 - 3312 (2021/05/11)

Developing and/or modifying fundamental chemical reactions using chemical industry-favorite heterogeneous recoverable catalytic systems in the water solvent is very important. In this paper, we developed convenient, green, and efficient approaches for the chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes in the presence of the recoverable heterogeneous carbon-supported palladium (Pd/C) catalytic system in water. The utilize of the simple, effective, and recoverable catalyst and also using of water as an entirely green solvent along with relatively short reaction times and good-to-excellent yields of the desired products are some of the noticeable features of the presented synthetic protocols. Graphic abstract: [Figure not available: see fulltext.].

Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon-Carbon Bonds with Chlorine on Demand

Liu, Feng,Wu, Na,Cheng, Xu

supporting information, p. 3015 - 3020 (2021/05/05)

Chlorination with chlorine is straightforward, highly reactive, and versatile, but it has significant limitations. In this Letter, we introduce a protocol that could combine the efficiency of electrochemical transformation and the high reactivity of chlorine. By utilizing Cl3CCN as the chloride source, donating up to all three chloride atom, the reaction could generate and consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.

Zinc(II)-Catalyzed Synthesis of Secondary Amides from Ketones via Beckmann Rearrangement Using Hydroxylamine-O-sulfonic Acid in Aqueous Media

Verma, Saumya,Kumar, Puneet,Khatana, Anil K.,Chandra, Dinesh,Yadav, Ajay K.,Tiwari, Bhoopendra,Jat, Jawahar L.

, p. 3272 - 3276 (2020/11/02)

A zinc(II)-catalyzed single-step protocol for the Beckmann rearrangement using hydroxylamine-O-sulfonic acid (HOSA) as the nitrogen source in water was developed. This direct method efficiently produces secondary amides under open atmosphere in a pure form after basic aqueous workup. It isenvironmentally benign and operationally simple.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6975-29-7