6975-29-7Relevant articles and documents
Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water
Zeynizadeh, Behzad,Mohammad Aminzadeh, Farkhondeh,Mousavi, Hossein
, p. 3289 - 3312 (2021/05/11)
Developing and/or modifying fundamental chemical reactions using chemical industry-favorite heterogeneous recoverable catalytic systems in the water solvent is very important. In this paper, we developed convenient, green, and efficient approaches for the chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes in the presence of the recoverable heterogeneous carbon-supported palladium (Pd/C) catalytic system in water. The utilize of the simple, effective, and recoverable catalyst and also using of water as an entirely green solvent along with relatively short reaction times and good-to-excellent yields of the desired products are some of the noticeable features of the presented synthetic protocols. Graphic abstract: [Figure not available: see fulltext.].
Chlorination Reaction of Aromatic Compounds and Unsaturated Carbon-Carbon Bonds with Chlorine on Demand
Liu, Feng,Wu, Na,Cheng, Xu
supporting information, p. 3015 - 3020 (2021/05/05)
Chlorination with chlorine is straightforward, highly reactive, and versatile, but it has significant limitations. In this Letter, we introduce a protocol that could combine the efficiency of electrochemical transformation and the high reactivity of chlorine. By utilizing Cl3CCN as the chloride source, donating up to all three chloride atom, the reaction could generate and consume the chlorine in situ on demand to achieve the chlorination of aromatic compounds and electrodeficient alkenes.
Zinc(II)-Catalyzed Synthesis of Secondary Amides from Ketones via Beckmann Rearrangement Using Hydroxylamine-O-sulfonic Acid in Aqueous Media
Verma, Saumya,Kumar, Puneet,Khatana, Anil K.,Chandra, Dinesh,Yadav, Ajay K.,Tiwari, Bhoopendra,Jat, Jawahar L.
, p. 3272 - 3276 (2020/11/02)
A zinc(II)-catalyzed single-step protocol for the Beckmann rearrangement using hydroxylamine-O-sulfonic acid (HOSA) as the nitrogen source in water was developed. This direct method efficiently produces secondary amides under open atmosphere in a pure form after basic aqueous workup. It isenvironmentally benign and operationally simple.