100986-85-4Relevant articles and documents
Experimental and computational study on the enantioseparation of four chiral fluoroquinolones by capillary electrophoresis with sulfated-β-cyclodextrin as chiral selector
Ma, Qianyun,Cong, Wei,Liu, Ye,Geng, Zikai,Lin, Ying,Wang, Zhaokun
, p. 549 - 557 (2021)
In this work, enantioseparation of four chiral fluoroquinolones (FQs), namely, ofloxacin, gemifloxacin, lomefloxacin, and gatifloxacin, was achieved by capillary electrophoresis with sulfated-β-cyclodextrin (S-β-CD) as chiral selector. Factors affecting the enantiomeric resolution, such as the concentrations of S-β-CD, BGE pH conditions, and the buffer types and concentrations, were optimized and discussed. A BGE consisting of 30 g/L S-β-CD and 30-mM phosphate at pH?4.0 was found fit for enantiomeric resolution of ofloxacin and gemifloxacin, while the same BGE at pH?3.0 was suitable for enantioseparation of lomefloxacin and gatifloxacin. The pH-dependent experiments showed that separation resolutions of four FQs enantiomers were significantly affected by BGE pH, which was thought to be related with the varying electrostatic attraction between the enantiomers and chiral selector. To verify this speculation, molecular docking studies were used for further investigation of the enantiomeric recognition mechanism of S-β-CD. Molecular model indicated that hydrophobic effect and hydrogen bond were involved in host-guest inclusion, but the electrostatic attraction enhanced the chiral discrimination by increasing the difference in binding energy between individual enantiomers and S-β-CD. This work provided a further insight into the chiral recognition mechanisms of CD derivatives.
Enantioseparation of racemic mixtures based on solvent sublation
Jiao, Feipeng,Yang, Weijie,Wang, Fen,Tian, Lingxing,Li, Lin,Chen, Xiaoqing,Mu, Kelang
, p. 661 - 667 (2012)
A method of solvent sublation was developed for the enantioseparation of racemic ofloxacin (rac Oflx) and racemic tryptophan (rac Trp). In this method, dibenzoyl-L-tartaric acid (L-DBTA) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) and sodium lauryl sulfate (SDS) were used as chiral coextractants and foamer, respectively. Several important parameters influencing the separation performances, such as pH in aqueous phase, concentrations of rac mixtures, L-DBTA, D2EHPA, and SDS, were investigated. Under the optimal operation conditions, the enantiomeric excess and enantioselectivity were 60.08% and 5.58 for Oflx and 65.09% and 6.31 for Trp, respectively. The yields of D-enantiomer and L-enantiomer were 34.23% and 8.54% for Oflx and 18.59% and 3.93% for Trp, respectively. The results suggest that the enantioselectivities have been enhanced compared with the traditional chiral extraction. This technique is an efficient chiral separation method, with many advantages such as low expenditures of organic solvent, low consumption of chiral extractant, and easy realization of multistage operation. Chirality 24:661-667, 2012. 2012 Wiley Periodicals, Inc. Copyright
Equilibrium and structural characterization of ofloxacin-cyclodextrin complexation
Toth, Gergo,Mohacsi, Reka,Racz, Akos,Rusu, Aura,Horvath, Peter,Szente, Lajos,Beni, Szabolcs,Noszal, Bela
, p. 291 - 300 (2013)
The enantiomer-specific characterization of ofloxacin-cyclodextrin complexes was carried out by a set of complementary analytical techniques. The apparent stability constants of the ofloxacin enantiomers with 20 different cyclodextrins at two different pH values were determined to achieve good resolution capillary electrophoresis enantioseparation either to establish enantioselective drug analysis assay, or to interpret and design improved host-guest interactions at the molecular level. The cyclodextrins studied differed in the nature of substituents, degree of substitution (DS), charge and purity, allowing a systematic test of these properties on the complexation. The seven-membered beta-cyclodextrin and its derivatives were found to be the most suitable hosts. Highest stability and best enantioseparation were observed for the carboxymethylated-beta-cyclodextrin (DS 3.5). The effect of substitution pattern (SP) was investigated by molecular modeling, verifying that SP greatly affects the complex stability. Induced circular dichroism was observed and found especially significant on carboxymethylated-beta- cyclodextrin. The complex stoichiometry and the geometry of the inclusion complexes were determined by 1H NMR spectroscopy, including 2D ROESY techniques. Irrespective of the kind of cyclodextrin, the complexation ratio was found to be 1:1. The alfa-cyclodextrin cavity can accommodate the oxazine ring only, whereas the whole tricyclic moiety can enter the beta- and gamma-cyclodextrin cavities. These equilibrium and structural information offer molecular basis for improved drug formulation. Springer Science+Business Media B.V. 2012.
GSH Induced Controlled Release of Levofloxacin from a Purpose-Built Prodrug: Luminescence Response for Probing the Drug Release in Escherichia coli and Staphylococcus aureus
Pal, Suman,Ramu, Vadde,Taye, Nandaraj,Mogare, Devraj G.,Yeware, Amar M.,Sarkar, Dhiman,Reddy, D. Srinivasa,Chattopadhyay, Samit,Das, Amitava
, p. 2062 - 2070 (2016)
Fluoroquinolones are third-generation broad spectrum bactericidal antibiotics and work against both Gram-positive and Gram-negative bacteria. Levofloxacin (L), a fluoroquinolone, is widely used in anti-infective chemotherapy and treatment of urinary tract infection and pneumonia. The main pathogen for urinary tract infections is Escherichia coli, and Streptococcus pneumoniae is responsible for pneumonia, predominantly a lower respiratory tract infection. Poor permeability of L leads to the use of higher dose of this drug and excess drug in the outer cellular fluid leads to central nervous system (CNS) abnormality. One way to counter this is to improve the lipophilicity of the drug molecule, and accordingly, we have synthesized two new Levofloxacin derivatives, which participated in the spatiotemporal release of drug via disulfide bond cleavage induced by glutathione (GSH). Recent studies with Streptococcus mutants suggest that it is localized in epithelial lining fluid (ELF) of the normal lower respiratory tract and the effective [GSH] in ELF is ~430 μM. E. coli typically cause urinary tract infections and the concentration of GSH in porcine bladder epithelium is reported as 0.6 mM for a healthy human. Thus, for the present study we have chosen two important bacteria (Gram + ve and Gram - ve), which are operational in regions having high extracellular GSH concentration. Interestingly, this supports our design of new lipophilic Levofloxacin based prodrugs, which released effective drug on reaction with GSH. Higher lipophilicity favored improved uptake of the prodrugs. Site specific release of the drug (L) could be achieved following a glutathione mediated biochemical transformation process through cleavage of a disulfide bond of these purpose-built prodrugs. Further, appropriate design helped us to demonstrate that it is possible also to control the kinetics of the drug release from respective prodrugs. Associated luminescence enhancement helps in probing the release of the drug from the prodrug in bacteria and helps in elucidating the mechanistic pathway of the transformation. Such an example is scarce in the contemporary literature.
Enantioselective separation of chiral ofloxacin using functional Cu(ii)-coordinated G-rich oligonucleotides
Fu, Yan,Duan, Xiaoli,Chen, Xiongfei,Zhang, Jinli,Li, Wei
, p. 1329 - 1333 (2014)
The DNA-based selector for discriminating chiral ofloxacin with high enantioselectivity and affinity is constructed through Cu(ii)-coordination with G-rich duplex containing successive guanines. Using this chiral selector, R- and S-ofloxacin can be direct
Preparation of polar group derivative β-cyclodextrin bonded hydride silica chiral stationary phases and their chromatography separation performances
Zhao, Baojing,Li, Lan,Wang, Yuting,Zhou, Zhiming
, p. 643 - 649 (2019)
Three novel β-cyclodextrin compounds derived with piperidine which is flexible, L-proline containing a chiral center, ionic liquid with 3,5-diamino-1,2,4-triazole as the cation were designed and synthesized as chiral selectors for enantiomer separation, whose name were (mono-6-deoxy-6-(piperidine)-β-cyclodextrin, mono-6-deoxy-6-(L-proline)-β-cyclodextrin, mono-6-deoxy-6-(3,5-diamino-1,2,4-triazole)-β-cyclodextrin, multi-substituted 3,5-diamino-1,2,4- triazole-(p-toluenesulfonic)-β-cyclodextrin), respectively. In addition, to enhance the polarity of chiral stationary phases, hydrosilylation and silylation reactions were implemented to derive ordinary silica, the common used selector carrier, to hydride silica, whose surface is covered with proton. 31 pyrrolidine compounds and some chiral drugs were tested in both polar organic mobile phase mode and normal mobile phase mode. 6-Deoxy-6-L-proline-β-cyclodextrin-CSP showed satisfactory separations in polar organic mobile phase mode and exihibited a strong separation capability in different pH values; multi-substituted 3,5-diamino-1,2,4-triazole-(p-toluenesulfonic)-β-cyclodextrin-CSP can separate pyrrolidine compounds in both mobile phase modes with high resolutions and separation efficiency compared to commercially available CSPs, making it to be the most valuable object to study. The composition of mobile phase, type of stationary phase as well as the peak problem of chromatograms was discussed deeply.
Conventional and microwave-assisted synthesis of quinolone carboxylic acid derivatives
Mirzaie,Lari,Vahedi,Hakimi
, p. 2865 - 2869 (2016)
Various antibacterial fluoroquinolone compounds are synthesized by the direct amination of 7-halo-6-fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b]pyridine using microwave under different reaction conditions. Solvent free high yield microwave synthesis of antibacterial fluoroquinolone compounds is convenient, rapid and environmentally friendly method.
Nano-Fe3 O4@ZrO2-SO3 H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones
Nakhaei, Ahmad,Ramezani, Shirin,Shams-Najafi, Sayyed Jalal,Farsinejad, Sadaf
, p. 739 - 746 (2018)
Nano-Fe3 O4 @ZrO2-SO3 H (n-FZSA), was utilized as a magnetic catalyst for the synthesis of various fluoroquinolone compounds. These compounds were prepared by the direct amination of 7-halo-6-fluoroquinolone-3-carboxylic acids with piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine in water. The results showed that n-FZSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives, giving the desired products in high yields. Furthermore, the catalyst was recyclable and could be used at least seven times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work-up procedure, and avoids the use of organic solvents.
Intrinsic enantioselectivity of natural polynucleotides modulated by copper ions
Fu, Yan,Chen, Xiongfei,Zhang, Jinli,Li, Wei
, p. 306 - 313 (2015)
Natural polynucleotides including Micrococcus lysodeikticus and calf thymus DNA exhibit enantioselective recognition to S-ofloxacin regulated by Cu2+. This is the first report that ofloxacin and Cu2+ have cooperative effects on the local distortions of polynucleotides. At the [Cu2+]/[base] ratio of 0.1, S-ofloxacin is more liable to induce the locally distorted structures of polynucleotides, of which the association constant of S-ofloxacin toward DNA-Cu(II) is three times higher than that of the R-enantiomer. The apparent increase of adsorption capability and cooperativity, as well as the change of adsorption mechanism were detected in the adsorption of ofloxacin enantiomers on polynucleotides upon Cu(II)-coordination. This study not only discloses the effect of the chiral drug on the structural transition of long double-stranded DNA, but provides fundamental data to develop a novel enantioseparation method based on natural polynucleotides.
Chiral separation and modeling of quinolones on teicoplanin macrocyclic glycopeptide antibiotics CSP
Ali, Imran,Suhail, Mohd,Asnin, Leonid
, p. 1304 - 1311 (2018)
New chiral high-performance liquid chromatography (HPLC) method for the enantiomeric resolution of quinolones is developed and described. The column used was Chirobiotic T (150?×?4.6?mm, 5.0?μm). Three mobile phases used were MeOH:ACN:Water:TEA (70:10:20:0.1%), (60:30:10:0.1%), and (50:30:20:0.1%). The flow rate of the mobile phases was 1.0?mL/min with UV detection at different wavelengths. The values of retention, resolution, and separation factors ranged from 1.5 to 6.0, 1.80 to 2.25, and 2.86 to 6.0, respectively. The limit of detection and quantification ranged from 4.0 to 12?ng and 40 to 52?ng, respectively. The modeling studies indicated strong interactions of R-enantiomers with teicoplanin chiral selector than S-enantiomers. The supra molecular mechanism of the chiral recognition was established by modeling and chromatographic studies. It was observed that hydrogen bondings and π-π interactions are the major forces for chiral separation. The present chiral HPLC method may be used for enantiomeric resolution of quinolones in any matrices.