142-82-5Relevant articles and documents
Zweifel,Steele
, p. 6021,6023 (1966)
Platinum Hydroformylation Catalysts containing Diphenylphosphine Oxide Ligands
Leeuwen, Piet W. N. M. van,Roobeek, Cornelis F.,Wife, Richard L.,Frijns, John H. G.
, p. 31 - 33 (1986)
Platinum complexes of the general formula Pt(H)(Ph2PO)(Ph2POH)(PPh3) (1a) catalyse the hydroformylation of hept-1-ene and, more significantly, hept-2-ene, yielding products of high linearity (90 and 60percent, respectively); the intermediate alkyl and acyl complexes (1c-e) which most often escape direct observation in a catalytic system, have been successfully isolated and identified.
REACTION OF HCo(CO)4 WITH OLEFINS, EFFECT OF Co2(CO)8
Ungvary, Ferenc,Marko, Laszlo
, p. 397 - 400 (1981)
Dicobalt octacarbonyl catalyzes the formation of acylcobalt tetracarbonyls and paraffins from olefins and cobalt tetracarbonyl hydride, presumably by generating radical species.The relative reactivities of CO and HCo(CO)4 towards an alkylcobalt carbonyl determine the carbonylation/hydrogenation ratio.
The effect of TiO2 particle size on the characteristics of Au-Pd/TiO2 catalysts
Kittisakmontree, Prathan,Yoshida, Hiroshi,Fujita, Shin-Ichiro,Arai, Masahiko,Panpranot, Joongjai
, p. 70 - 75 (2015)
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au-Pd alloy particles increased slightly from sub-nano (2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au-Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.
HYDROGENATION OF ALKENES AND ALKYNES ON Pd-POLYHETEROARYLENE CATALYSTS TREATED WITH SODIUM BOROHYDRIDE
Belyi, A. A.,Chigladze, L. G.,Rusanov, A. L.,Vol'pin, M. E.
, p. 1801 - 1806 (1989)
As a result of treatment with sodium borohydride, Pd(0)-polyheteroarylene catalysts for the hydrogenation of unsaturated compounds acquire the capability for selective hydrogenation of alkynes as a result of suppressing processes of hydrogen addition to the double bond of the olefins and dienes that are obtained by reduction of the alkynes.
Mechanism of autocatalysis in the thermal dehydrochlorination of poly(vinyl chloride)
Starnes Jr., William H.,Ge, Xianlong
, p. 352 - 359 (2004)
Autocatalysis during the thermal dehydrochlorination of poly(vinyl chloride) (PVC) is shown to be a free-radical process that converts the ordinary monomer units of the polymer into chloroallylic structures that have low thermal stabilities. In the first stage of dehydrochlorination, conjugated polyene sequences are created by a nonfree-radical route. They react with HCl to give cation monoradicals and/or excited cation diradicals. One or both of these species, or other radicals formed them, can then abstract methylene hydrogen in order to produce new radicals that are also carbon-centered. These are converted by chlorine-atom β scission into the chloroallylic segments, which start the growth of new polyenes in the usual (nonradical) way. At 180°C in solid PVC, autocatalysis was inhibited by free-radical scavengers (a hindered phenol, triphenylmethane, and metallic mercury) but greatly enhanced by an increased concentration of HCl when all-trans-β-carotene, a model for PVC polyene sequences, was introduced simultaneously. When the were subjected to autocatalytic conditions, other model compounds gave products that apparently resulted from the abstraction of hydrogen by free-radical intermediates.
Synthetic Fuels from Biomass: Photocatalytic Hydrodecarboxylation of Octanoic Acid by Ni Nanoparticles Deposited on TiO2
Albero, Josep,Du, Xiangze,García, Hermenegildo,Hu, Changwei,Li, Dan,Peng, Yong
, (2021/12/13)
Decarboxylation of low-value fatty acids from biomass is a simple process to produce synthetic fuels suitable to be blended with gasoline or diesel. The present study reports the photocatalytic decarboxylation of octanoic acid in the presence of H2 by a series of modified TiO2 to form mixtures of n-heptane and tetradecane as major products in variable proportions, depending on the photocatalyst and the reaction conditions. It was found that the photocatalytic activity increases upon an optimal reductive NaBH4 treatment, presumably by generation of surface oxygen vacancies and by the deposition of Ni nanoparticles in the appropriate loading. Under the optimized conditions, an almost complete octanoic acid conversion and a combined selectivity to n-heptane and tetradecane over 80 % were reached at 10 h of UV/Vis light irradiation with a 300 W Xe lamp. No changes in the photocatalytic performance were observed for six consecutive runs. The present results illustrate the possibility that photocatalytic decarboxylation offers for the transformation of biomass into synthetic fuels under mild conditions.
H2-Free Selective Dehydroxymethylation of Primary Alcohols over Palladium Nanoparticle Catalysts
Yamaguchi, Sho,Kondo, Hiroki,Uesugi, Kohei,Sakoda, Katsumasa,Jitsukawa, Koichiro,Mitsudome, Takato,Mizugaki, Tomoo
, p. 1135 - 1139 (2020/12/29)
The dehydroxymethylation of primary alcohols is a promising strategy to transform biomass-derived oxygenates into hydrocarbon fuels. In this study, a novel, highly efficient, and reusable heterogeneous catalyst system was established for the H2-free dehydroxymethylation of primary alcohol using cerium oxide-supported palladium nanoparticles (Pd/CeO2). A wide range of aliphatic and aromatic alcohols including biomass-derived alcohols were converted into the corresponding one-carbon shorter hydrocarbons in high yields in the absence of any additives, accompanied by the production of H2 and CO. Pd/CeO2 was easily recovered from the reaction mixture and reused, retaining its high activity, thus, providing a simple and sustainable methodology to produce hydrocarbon fuels from biomass-derived oxygenates.