312-85-6Relevant articles and documents
Selective conversion of glycerol to lactic acid with iron pincer precatalysts
Sharninghausen, Liam S.,Mercado, Brandon Q.,Crabtree, Robert H.,Hazari, Nilay
, p. 16201 - 16204 (2015)
A family of iron complexes of PNP pincer ligands are active catalysts for the conversion of glycerol to lactic acid with high activity and selectivity. These complexes also catalyse transfer hydrogenation reactions using glycerol as the hydrogen source.
Highly Efficient Iridium-Catalyzed Production of Hydrogen and Lactate from Glycerol: Rapid Hydrogen Evolution by Bimetallic Iridium Catalysts
Cheong, Yeon-Joo,Sung, Kihyuk,Kim, Jin-A,Kim, Yu Kwon,Jang, Hye-Young
, p. 4064 - 4068 (2020)
Mono- and bimetallic iridium complexes involving novel triscarbene ligands were synthesized and applied to the dehydrogenation of biomass-derived glycerol. This resulted in affording hydrogen and lactate with the excellent turnover number (TON; 3,240,000) and turnover frequency (TOF; 162,000 h–1). The triscarbene ligand in a single frame allowed the formation of bimetallic iridium complexes. This induced the cooperative effect of two iridium ions and rendered excellent TONs and TOFs in the production of hydrogen and lactate.
Cannabichromene and Δ9-Tetrahydrocannabinolic Acid Identified as Lactate Dehydrogenase-A Inhibitors by in Silico and in Vitro Screening
Martin, Lewis J.,Cairns, Elizabeth A.,Heblinski, Marika,Fletcher, Charlotte,Krycer, James R.,Arnold, Jonathon C.,McGregor, Iain S.,Bowen, Michael T.,Anderson, Lyndsey L.
, p. 1469 - 1477 (2021/05/29)
Cannabis sativa contains >120 phytocannabinoids, but our understanding of these compounds is limited. Determining the molecular modes of action of the phytocannabinoids may assist in their therapeutic development. Ligand-based virtual screening was used to suggest novel protein targets for phytocannabinoids. The similarity ensemble approach, a virtual screening tool, was applied to target identification for the phytocannabinoids as a class and predicted a possible interaction with the lactate dehydrogenase (LDH) family of enzymes. In order to evaluate this in silico prediction, a panel of 18 phytocannabinoids was screened against two LDH isozymes (LDHA and LDHB) in vitro. Cannabichromene (CBC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA) inhibited LDHA via a noncompetitive mode of inhibition with respect to pyruvate, with Ki values of 8.5 and 6.5 μM, respectively. In silico modeling was then used to predict the binding site for CBC and Δ9-THCA. Both were proposed to bind within the nicotinamide pocket, overlapping the binding site of the cofactor NADH, which is consistent with the noncompetitive modes of inhibition. Stemming from our in silico screen, CBC and Δ9-THCA were identified as inhibitors of LDHA, a novel molecular target that may contribute to their therapeutic effects.
Scope and limitations of reductive amination catalyzed by half-sandwich iridium complexes under mild reaction conditions
Nguyen, Dat P.,Sladek, Rudolph N.,Do, Loi H.
supporting information, (2020/07/15)
The conversion of aldehydes and ketones to 1° amines could be promoted by half-sandwich iridium complexes using ammonium formate as both the nitrogen and hydride source. To optimize this method for green chemical synthesis, we tested various carbonyl substrates in common polar solvents at physiological temperature (37 °C) and ambient pressure. We found that in methanol, excellent selectivity for the amine over alcohol/amide products could be achieved for a broad assortment of carbonyl-containing compounds. In aqueous media, selective reduction of carbonyls to 1° amines was achieved in the absence of acids. Unfortunately, at Ir catalyst concentrations of 1 mM in water, reductive amination efficiency dropped significantly, which suggest that this catalytic methodology might be not suitable for aqueous applications where very low catalyst concentration is required (e.g., inside living cells).
Efficient and Bio-inspired Conversion of Cellulose to Formic Acid Catalyzed by Metalloporphyrins in Alkaline Solution
Liu, Qiang,Zhou, Doudou,Li, Zongxiang,Luo, Weiping,Guo, Cancheng
supporting information, p. 1063 - 1068 (2017/07/24)
A bio-inspired approach for efficient conversion of cellulose to formic acid (FA) was developed in an aqueous alkaline medium. Metalloporphyrins mimicking cytochrome P450 exhibit efficiently and selectively catalytic performance in catalytic conversion of cellulose. High yield of FA about 63.7% was obtained by using sulfonated iron(III) porphyrin as the catalyst and O2 as the oxidant. Iron(III)-peroxo species, TSPPFeIIIOO?, was involved to cleave the C-C bonds of gluconic acid to FA in this catalytic system. This approach used relatively high concentration of cellulose and ppm concentration of catalyst. This work may provide a bio-inspired route to efficient conversion of cellulose to FA.
GLUCOSYLCERAMIDE SYNTHASE INHIBITORS FOR THE TREATMENT OF DISEASES
-
Paragraph 000602, (2015/04/15)
Described herein are compounds of Formula I, methods of making such compounds, pharmaceutical compositions and medicaments containing such compounds, and methods of using such compounds to treat or prevent diseases or conditions associated with the enzyme glucosylceramide synthase (GCS).
Platinum on carbonaceous supports for glycerol hydrogenolysis: Support effect
Oberhauser, Werner,Evangelisti, Claudio,Jumde, Ravindra P.,Psaro, Rinaldo,Vizza, Francesco,Bevilacqua, Manuela,Filippi, Jonathan,Machado, Bruno F.,Serp, Philippe
, p. 111 - 117 (2015/09/28)
Metal vapor synthesis (MVS) technique was applied to generate Pt-nanoparticles of different size (1.3 nm and 2.5 nm) deposited onto carbonaceous supports, mainly characterized by a different surface area. The supported catalysts were employed in the glycerol hydrogenolysis reaction carried out under basic reaction conditions at 433 and 453 K to obtain 1,2-propanediol as the main liquid product. Comparison of the composition of the liquid- and gas-phase products obtained by the different catalysts showed a clear dependence of aqueous-phase reforming, water-gas shift reaction activity as well as 1,2-propanediol chemoselectivity on the degree of Pt-sintering occurring on different carbon supports. High-resolution transmission electron microscopic and X-ray powder diffraction studies carried out on as-synthesized and recovered heterogeneous catalysts provided clear evidences that a high surface area carbon support, such as Ketjen Black EC-600JD, notably retards nanoparticle aggregation.
The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts
Ryabenkova, Yulia,He, Qian,Miedziak, Peter J.,Dummer, Nicholas F.,Taylor, Stuart H.,Carley, Albert F.,Morgan, David J.,Dimitratos, Nikolaos,Willock, David J.,Bethell, Donald,Knight, David W.,Chadwick, David,Kiely, Christopher J.,Hutchings, Graham J.
, p. 139 - 145 (2013/08/24)
The use of bio-renewable resources for the generation of materials and chemicals continues to attract significant research attention. It is well established that glycerol is an excellent starting material for the production of 1,2-propanediol by dehydration/hydrogenation and that this can subsequently be oxidised to lactic acid, which has the potential to be used as a major chemical in the production of biodegradable polymers. Previous studies using gold catalysts for the oxidation of 1,2-propanediol have used elevated temperatures and pressures. We now show that the oxidation of 1,2-propanediol to form lactic acid can be carried out selectively under mild reaction conditions with gold-platinum catalysts prepared using a sol-immobilisation method, with activated carbon as the support. Carrying out the reaction at ambient temperature with air significantly improves the reaction in terms of its environmental impact and its industrial attractiveness, as lactic acid can be obtained with high selectivity.
Process for the preparation of lactic acid or lactate from a magnesium lactate comprising medium
-
Page/Page column 7, (2010/04/30)
The present invention relates to an improved process for the preparation of lactic acid and or lactate from a magnesium lactate comprising medium. In said process, magnesium lactate is reacted with a hydroxide of sodium, calcium, and/or ammonium at a pH range between 9 and 12, preferably between 9.9 and 11, to form a lactate of sodium, potassium, calcium and/or ammonia and magnesium hydroxide. With the process according to the invention a lactate salt is formed and magnesium hydroxide. It is essential that said so-called SWAP reaction is conducted within a specific pH range: It was found that when conducting the SWAP reaction at a pH range between 9 and 12 magnesium hydroxide particles are formed which can easily be separated from the lactate salt solution formed.
DIALYSIS SOLUTIONS CONTAINING PYROPHOSPHATES
-
, (2009/04/24)
Dialysis solutions comprising pyrophosphates and methods of making and using the dialysis solutions are provided. In an embodiment, the present disclosure provides a dialysis solution comprising a stable and therapeutically effective amount of pyrophosphate. The dialysis solution can be sterilized, for example, using a technique such as autoclave, steam, high pressure, ultra-violet, filtration or combination thereof. The dialysis solution can be in the form of a concentrate.