2373-80-0Relevant articles and documents
Synthesis, characterization, antidepressant and antioxidant activity of novel piperamides bearing piperidine and piperazine analogues
Prashanth,Revanasiddappa, Hosakere D.,Lokanatha Rai,Veeresh
, p. 7065 - 7070 (2012)
A series of piperamide derivatives (8a-j) was synthesized with various substituted piperidine and piperazine compounds. The prepared compounds were evaluated for antibacterial activity against gram-positive and gram-negative bacteria and antifungal activity by disc diffusion method. The antioxidant activity of the compounds was evaluated by DPPH and superoxide radical scavenging method and antidepressant activity using forced swim and tail suspension behavioral despair tests in mice. The compounds 8a, 8b and 8c were investigated for their monoamine oxidase A and B (MAO-A and MAO-B) inhibitory property. Some of the test compounds were active in forced swim test (FST) and tail suspension test (TST). Compounds 8a and 8b showed a significant effect, when compared to standard drug, clorgyline.
4-Alkyliden-azetidinones modified with plant derived polyphenols: Antibacterial and antioxidant properties
Giacomini, Daria,Musumeci, Rosario,Galletti, Paola,Martelli, Giulia,Assennato, Lorenzo,Sacchetti, Gianni,Guerrini, Alessandra,Calaresu, Enrico,Martinelli, Marianna,Cocuzza, Clementina
, p. 604 - 614 (2017)
Antimicrobial resistance is one of the major and growing concerns in hospital- and community acquired infections, and new antimicrobial agents are therefore urgently required. It was reported that oxidative stress could contribute to the selection of resistant bacterial strains, since reactive oxygen species (ROS) revealed to be an essential driving force. In the present work 4-alkylidene-azetidinones, a new class of antibacterial agents, were functionalized with phytochemical polyphenolic acids such as protocatechuic, piperonyl, caffeic, ferulic, or sinapic acids and investigated as dual target antibacterial-antioxidant compounds. The best candidates showed good activities against multidrug resistant clinical isolates of MRSA (MICs 2–8 μg/mL). Among the new compounds, two revealed the best antioxidant capacity with TEAC-DPPH and TEAC-ABTS being significantly more active than Trolox.
Quorum sensing and nf-κb inhibition of synthetic coumaperine derivatives from piper nigrum
Baruch, Yifat,Gopas, Jacob,Kadosh, Yael,Kumar, Rajendran Saravana,Kushmaro, Ariel,Muthuraman, Subramani,Yaniv, Karin
supporting information, (2021/05/28)
Bacterial communication, termed Quorum Sensing (QS), is a promising target for virulence attenuation and the treatment of bacterial infections. Infections cause inflammation, a process regulated by a number of cellular factors, including the transcription Nuclear Factor kappa B (NF-κB); this factor is found to be upregulated in many inflammatory diseases, including those induced by bacterial infection. In this study, we tested 32 synthetic derivatives of coumaperine (CP), a known natural compound found in pepper (Piper nigrum), for Quorum Sensing Inhibition (QSI) and NF-κB inhibitory activities. Of the compounds tested, seven were found to have high QSI activity, three inhibited bacterial growth and five inhibited NF-κB. In addition, some of the CP compounds were active in more than one test. For example, compounds CP-286, CP-215 and CP-158 were not cytotoxic, inhibited NF-κB activation and QS but did not show antibacterial activity. CP-154 inhibited QS, decreased NF-κB activation and inhibited bacterial growth. Our results indicate that these synthetic molecules may provide a basis for further development of novel therapeutic agents against bacterial infections.
Dual Nickel/Ruthenium Strategy for Photoinduced Decarboxylative Cross-Coupling of α,β-Unsaturated Carboxylic Acids with Cycloketone Oxime Esters
Gao, Ang,Jiang, Run-Chuang,Liu, Chuang-Chuang,Liu, Qi-Le,Lu, Xiao-Yu,Xia, Ze-Jie
supporting information, p. 8829 - 8842 (2021/06/30)
Herein, a dual nickel/ruthenium strategy is developed for photoinduced decarboxylative cross-coupling between α,β-unsaturated carboxylic acids and cycloketone oxime esters. The reaction mechanism is distinct from previous photoinduced decarboxylation of α,β-unsaturated carboxylic acids. This reaction might proceed through a nickelacyclopropane intermediate. The C(sp2)-C(sp3) bond constructed by the aforementioned reaction provides an efficient approach to obtaining various cyanoalkyl alkenes, which are synthetically valuable organic skeletons in organic and medicinal chemistry, under mild reaction conditions. The protocol tolerates many critical functional groups and provides a route for the modification of complex organic molecules.
Simplified Derivatives of Dibenzylbutyrolactone Lignans from Hydrocotyle bonariensis as Antitrypanosomal Candidates
Souza, Dalete Christine S.,Costa-Silva, Thais A.,Morais, Thiago R.,Brito, Juliana R.,Ferreira, Edgard A.,Antar, Guilherme M.,Sartorelli, Patricia,Tempone, Andre G.,Lago, Jo?o Henrique G.
, (2021/10/01)
The search for the pharmacophore of a bioactive compound, crucial for drug discovery studies, involves the adequate arrangement of different atoms in the molecule. As part of a continuous work aiming discovery of new drug candidates against the protozoan parasite Trypanosoma cruzi, the hexane extract of Hydrocotyle bonariensis was subjected to a bioactivity-guided fractionation to afford two chemically related dibenzylbutyrolactone lignans – hinokinin (1) and hibalactone (2). Compounds 1 and 2 showed activity against trypomastigote with EC50 values of 17.0 and 69.4 μM, respectively. Compound 1 was also active against the clinically relevant form of the parasite, amastigotes, displaying an EC50 value of 34.4 μM. The structure-activity relationship (SAR) indicated that the absence of the double bond at C-7 is a crucial feature for the increment of the antiparasitic activity. The lethal action of the most potent compound 1 was investigated in the trypomastigotes. The fluorescent-based assay with SYTOX Green demonstrated a significant alteration of the plasma membrane permeability of the parasite. Additionally, compound 1 demonstrated no significant hemolytic activity in mice erythrocytes at 200 μM. To search the pharmacophore, three different simplified compounds – 3,4-methylenedioxydihydrocinnamic acid (3), 3,4-methylenedioxydihydrocinnamic alcohol (4) and 3,4-methylenedioxycinnamic acid (5) – were prepared and tested against T. cruzi. These derivatives displayed EC50 values of 37.2 (3), 25.8 (4) and 73.5 (5) μM against trypomastigotes, and 41.3 (3) and 48.2 (4) μM against amastigotes, whereas compound 5 was inactive. Except for compound 2, which resulted in a CC50 value of 114.5 μM, all compounds showed no mammalian cytotoxicity at 200 μM. An in silico ADMET study was performed and predicted values demonstrated an acceptable drug-likeness profile for compounds 1–5. Despite the minor reduction in the potency, the simplified derivatives retained the antitrypanosomal activity against the intracellular amastigotes, even with 95 % reduction of their molecular weight. Additionally, in silico studies suggested them as more soluble compounds, making these simplified structures promising scaffolds for optimization studies in Chagas disease.
Identification of novel functionalized carbohydrazonamides designed as chagas disease drug candidates
Do Nascimento, Mayara S. S.,Camara, Vitória R. F.,da Costa, Juliana S.,Barbosa, Juliana M. C.,Lins, Alessandra S. M.,Salom?o, Kelly,de Castro, Solange L.,Carvalho, Samir A.,da Silva, Edson F.,Fraga, Carlos A. M.
, p. 774 - 783 (2020/08/19)
Background: Although several research efforts have been made worldwide to discover novel drug candidates for the treatment of Chagas disease, the nitroimidazole drug benznidazol remains the only therapeutic alternative in the control of this disease. However, this drug presents reduced efficacy in the chronic form of the disease and limited safety after long periods of admini-stration, making it necessary to search for new, more potent and safe prototypes. Objective: We described herein the synthesis and the trypanocidalaction of new functionalized carbohydrazonamides (2-10) against trypomastigote forms of Trypanosoma cruzi. Methods: These compounds were designed through the application of molecular hybridization concept between two potent anti-T. cruzi prototypes, the nitroimidazole derivative megazol (1) and the cinnamyl N-acylhydrazone derivative (14) which have been shown to be twice as potent in vitro as benznidazole. Results: The most active compounds were the (Z)-N'-((E)-3-(4-nitrophenyl)-acryloyl)-1-methyl-5-nitro-1H-imidazol-2-carbohydrazonamide (6) (IC50 =9.50 μM) and the (Z)-N'-((E)-3-(4-hydroxyphe-nyl)-acryloyl)-1-methyl-5-nitro-1H-imidazol-2-carbohydrazonamide (8) (IC50 =12.85 μM), which were almost equipotent to benznidazole (IC50 =10.26 μM) used as standard drug. The removal of the amine group attached to the imine subunit in the corresponding N-acylhydrazone derivatives (11-13) resulted in less potent or inactive compounds. The para-hydroxyphenyl derivative (8) presented also a good selectivity index (SI = 32.94) when tested against mammalian cells from Swiss mice. Conclusion: The promising trypanocidal profile of new carbohydrazonamide derivatives (6) and (8) was characterized. These compounds have proved to be a good starting point for the design of more effective trypanocidal drug candidates.
Identification and optimization of piperine analogues as neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/keap1 pathway
Cai, Xiaoying,Chen, Lijuan,Hong, Feng,Kuang, Shuang,Li, Yan,Ma, Xu,Qi, Wenyan,Shi, Mingsong,Wang, Lun,Xu, Ruiling,Xue, Linlin,Ye, Haoyu,Zhang, Ruijia
, (2020/05/11)
Parkinson's disease (PD) is a slowly progressive and complex neurodegenerative disorder. Up to date, there are no approved drugs that could slow or reverse the neurodegenerative process of PD. Here, we reported the synthesis of series of piperine analogues and the evaluation of their neuroprotective effects against hydrogen peroxide (H2O2) induced damage in the neuron-like PC12 cells. Among these analogues, 3b exhibited the most potent protection effect and its underlying mechanism was further investigated. Further results indicated that the ROS scavenging and cytoprotection effect of 3b might be related to the Nrf2 activation and upregulation of related phase II antioxidant enzymes, such as HO-1 and NQO1. In in vivo study, oral administration (100 mg/kg) of 3b significantly attenuated PD-associated behavioral deficits in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and protected tyrosine hydroxylase-immunopositive dopaminergic neurons. Our results provided evidence that 3b might be a promising candidate for Parkinson's disease treatment.
Synthesis and antimicrobial evaluation of piperic acid amides and their lower homologues
Achanta, Prabhakar S.,Raj, Sneha,Horam, Soyar,Arockiaraj, Jesu,Bobbala, Ravi Kumar,Akkinepally, Raghuram Rao,Pasupuleti, Mukesh,Achanta, Appa Rao V. N.
, p. 366 - 373 (2019/12/12)
Seven piperic acid amides along with their lower homologs (12) were synthesized using HATU-DIPEA coupling reagent. All the synthesized derivatives were evaluated for their antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, and vancomycin-resistant P. aeruginosa. They were found to be more active on P. aeruginosa than on S. aureus. However, they did not exhibit potent activity on Vancomycin resistant P. aeruginosa. Among the tested compounds, methylenedioxycinnamic acid amide of anthranilic acid (MDCA-AA, 2a) was found to be most active against S. aureus with MIC of 3.125 μg/ml. The PAS and INH amides of piperic acid were screened against Mycobacterium tuberculosis H37Ra strain. They were found to be most active among all the tested compounds but were found to be less active than the standard drug, isoniazid.
Piperine derivative as well as preparation method and application thereof
-
Paragraph 0255; 0257-0259, (2020/05/08)
The invention provides a piperine derivative as well as a preparation method and an application thereof. The piperine derivative is a compound shown as a formula (I), or a salt thereof, or a stereoisomer thereof, or a hydrate thereof. The compound provided by the invention can effectively protect nerve cells and improve the survival rate of the nerve cells, so that the compound provided by the invention can effectively treat neurodegenerative diseases and can be used for preparing medicines for treating the neurodegenerative diseases.
Mild, Metal-Free and Protection-Free Transamidation of N-Acyl-2-piperidones to Amino Acids, Amino Alcohols and Aliphatic Amines and Esterification of N-Acyl-2-piperidones
Subramani, Muthuraman,Rajendran, Saravana Kumar
supporting information, p. 3677 - 3686 (2019/06/08)
Amides are indispensable building blocks of biological systems, pharmaceuticals, and materials. We report a highly selective method for the synthesis of amides via transamidation process. Transamidation of N-acyl-2-piperidones with a broad range of amines is demonstrated under exceedingly mild and metal-free reaction condition that relies on the amide bond twist to weaken the amidic resonance. Transamidation proceeds under the neat condition at room temperature, in short reaction times (30–90 min) with good yields. Considerable variation is tolerated with both amine and imide substrates. Of note, amines bearing carboxylic acids (glycine and serine) and hydroxyl groups (dopamine, tyramine, etc.) are well tolerated which are otherwise problematic under the metal-catalyzed protocol. Our current method is applicable for transamidation of both alkyl and aryl-N-acyl-2-piperidones. The practical value of the method is highlighted by the synthesis of four natural product amide alkaloids in high yields under mild reaction conditions. In the absence of nucleophilic amines, N-acyl-2-piperidones undergoes esterification with EtOH at elevated temperature. Single crystal X-ray analysis of an N-acyl-2-piperidone shows amide bond twist, τ = –20.39° and pyramidalization, χN = –11.73°. This weakens the amidic conjugation and might be the factor controlling the reactivity and selectivity of these imides. We envision that the N-acyl-2-piperidone scaffold would be useful in the synthesis of pharmaceuticals and materials.