24155-42-8Relevant articles and documents
Novel BuChE-IDO1 inhibitors from sertaconazole: Virtual screening, chemical optimization and molecular modeling studies
Zhou, You,Lu, Xin,Du, Chenxi,Liu, Yijun,Wang, Yifan,Hong, Kwon Ho,Chen, Yao,Sun, Haopeng
, (2021/01/07)
In our effort towards the identification of novel BuChE-IDO1 dual-targeted inhibitor for the treatment of Alzheimer's disease (AD), sertaconazole was identified through a combination of structure-based virtual screening followed by MM-GBSA rescoring. Preliminary chemical optimization was performed to develop more potent and selective sertaconazole analogues. In consideration of the selectivity and the inhibitory activity against target proteins, compounds 5c and 5d were selected for the next study. Further modification of compound 5c led to the generation of compound 10g with notably improved selectivity towards BuChE versus AChE. The present study provided us with a good starting point to further design potent and selective BuChE-IDO1 inhibitors, which may benefit the treatment of late stage AD.
BuChE-IDO1 inhibitor as well as preparation method and application thereof
-
, (2021/04/26)
The invention relates to the field of medicines, and particularly discloses a BuChE-IDO1 inhibitor as well as a preparation method and application thereof. The 7-chlorine-3-substituted benzothiophene part of sertaconazole is chemically modified, the influence of the 7-chlorine-3-substituted benzothiophene part of sertaconazole on the in-vitro inhibitory activity of AChE, BuChE and IDO1 is explored, the target compound is further optimized, and the technical problems that an existing BuChE-IDO1 inhibitor is poor in pertinence and safety are solved. What is explored is that an appropriate substituent group introduced to a 2-benzothiazole ring can form additional interaction with surrounding amino acids and heme iron, so that the binding affinity of the analogue with BuChE and IDO1 is increased, and a new idea is broadened for more efficient and targeted treatment of advanced AD diseases.
SMALL MOLECULE STIMULATORS OF THE CORE PARTICLE OF THE PROTEASOME
-
Paragraph 00101, (2021/02/26)
This present disclosure relates to series compounds and methods of use for the treatment of a disease caused by abnormal regulation of the ubiquitin-proteasome system (UPS), and wherein said compound is an effective stimulator of the 20S core particle (CP) of the UPS. Composition matters and methods of uses are within the scope of this disclosure.
Lead optimization generates selenium-containing miconazole CYP51 inhibitors with improved pharmacological profile for the treatment of fungal infections
Xu, Hang,Yan, Zhong-zuo,Guo, Meng-bi,An, Ran,Wang, Xin,Zhang, Rui,Mou, Yan-hua,Hou, Zhuang,Guo, Chun
, (2021/03/16)
A series of selenium-containing miconazole derivatives were identified as potent antifungal drugs in our previous study. Representative compound A03 (MIC = 0.01 μg/mL against C.alb. 5314) proved efficacious in inhibiting the growth of fungal pathogens. However, further study showed lead compound A03 exhibited potential hemolysis, significant cytotoxic effect and unfavorable metabolic stability and was therefore modified to overcome these drawbacks. In this article, the further optimization of selenium-containing miconazole derivatives resulted in the discovery of similarly potent compound B17 (MIC = 0.02 μg/mL against C.alb. 5314), exhibiting a superior pharmacological profile with decreased rate of metabolism, cytotoxic effect and hemolysis. Furthermore, compound B17 showed fungicidal activity against Candida albicans and significant effects on the treatment of resistant Candida albicans infections. Meanwhile, compound B17 not only could reduce the ergosterol biosynthesis pathway by inhibiting CYP51, but also inhibited biofilm formation. More importantly, compound B17 also shows promising in vivo efficacy after intraperitoneal injection and the PK study of compound B17 was evaluated. In addition, molecular docking studies provide a model for the interaction between the compound B17 and the CYP51 protein. Overall, we believe that these selenium-containing miconazole compounds can be further developed for the potential treatment of fungal infections.
Azole antifungal compounds could have dual cholinesterase inhibitory potential according to virtual screening, enzyme kinetics, and toxicity studies of an inhouse library
Barut, Burak,Sari, Suat,Sabuncuo?lu, Suna,?zel, Arzu
, (2021/03/23)
Recent advances in cholinesterase inhibitors opened new venues for the treatment of cognitive disorders like Alzheimer's disease. Certain azole antifungals like miconazole were reported to have cholinesterase inhibitory effects and hence ameliorate cognitive deficits. In this study, we tested a set of azole antifungal derivatives selected through virtual screening of an inhouse library for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory effects. Compound 61 showed potent and selective AChE inhibition (IC50 = 8.77 μM). The study also yielded dual AChE/BChE inhibitors in addition to a number of potent AChE inhibitors. Enzyme kinetics assays revealed that AChE inhibitors were competitive inhibitors. All the active compounds were imidazole derivatives and the modeling study showed that imidazole at protonated state contributed greatly to the binding interactions with some key residues of AChE and BChE active site. The active derivatives had negligible cytotoxic effects on murine fibroblast viability. According to our results, compounds featuring the classical scaffold of azole antifungal drugs could hold high potential for anticholinesterase drug design.
Design, synthesis, and biological evaluation of novel miconazole analogues containing selenium as potent antifungal agents
An, Ran,Guo, Chun,Guo, Meng-bi,Hou, Zhuang,Mou, Yan-hua,Su, Xin,Xu, Hang
, (2020/05/11)
Herein, based on the theory of bioisosterism, a series of novel miconazole analogues containing selenium were designed, synthesized and their inhibitory effects on thirteen strains of pathogenic fungi were evaluated. It is especially encouraging that all the novel target compounds displayed significant antifungal activities against all tested strains. Furthermore, all the target compounds showed excellent inhibitory effects on fluconazole-resistant fungi. Subsequently, preliminary mechanistic studies indicated that the representative compound A03 had a strong inhibitory effect on C.alb. CYP51. Moreover, the target compounds could prevent the formation of fungi biofilms. Further hemolysis test verified that potential compounds had higher safety than miconazole. In addition, molecular docking study provided the interaction modes between the target compounds and C.alb. CYP51. These results strongly suggested that some target compounds are promising as novel antifungal drugs.
A imidazole ethanol preparation method (by machine translation)
-
Paragraph 0030; 0033; 0035; 0037; 0039; 0041; 0043; 0045, (2019/01/16)
The invention discloses a method for the preparation of imidazole ethanol, which belongs to the technical field of organic synthesis, comprising the following steps: to 1 - (2, 4 - dichlorophenyl) - 2 - chloro - ethanol and imidazole as raw materials, hexafluoro isopropanol as solvent, inorganic carrier KOH/A12 O3 As basic catalyst, through N - alkylation reaction, filtration, rotary evaporation, neutralization, filtration, recrystallization to obtain the imidazole alcohol; the invention mild reaction conditions, the reaction time is short, the solvent to reclaim, catalyst and not fully involved in the reaction of the imidazole can be recycled, is a green synthetic imidazole ethanol. (by machine translation)
Investigation of multi-target-directed ligands (MTDLs) with butyrylcholinesterase (BuChE) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition: The design, synthesis of miconazole analogues targeting Alzheimer's disease
Lu, Xin,He, Si-yu,Li, Qi,Yang, Hongyu,Jiang, Xueyang,Lin, Hongzhi,Chen, Yao,Qu, Wei,Feng, Feng,Bian, Yaoyao,Zhou, You,Sun, Haopeng
, p. 1665 - 1674 (2018/02/23)
In our endeavor towards the development of potent multi-target ligands for the treatment of Alzheimer's disease, miconazole was identified to show BuChE-IDO1 dual-target inhibitory effects. Morris water maze test indicated that miconazole obviously ameliorated the cognitive function impaired by scopolamine. Furthermore, it showed good safety in primary hepatotoxicity evaluation. Based on these results, we designed, synthesized, and evaluated a series of miconazole derivatives as BuChE-IDO1 dual-target inhibitors. Out of the 12 compounds, 5i and 5j exhibited the best potency in enzymatic evaluation, thus were selected for subsequent behavioral study, in which the two compounds exerted much improved effect than tacrine. Meanwhile, 5i and 5j displayed no apparent hepatotoxicity. The results suggest that miconazole analogue offers an attractive starting point for further development of new BuChE-IDO1 dual-target inhibitors against Alzheimer's disease.
Anti-staphylococcal biofilm activity of miconazoctylium bromide
Tessier, Jérémie,Golmohamadi, Mahmood,Wilkinson, Kevin J.,Schmitzer, Andreea R.
, p. 4288 - 4294 (2018/06/22)
We designed and synthesized miconazole analogues containing a substituted imidazolium moiety. The structural modification of the miconazole led to a compound with high potency to prevent the formation and disrupt bacterial biofilms, as a result of accumulation in the biofilm matrix, permeabilization of the bacterial membrane and generation of reactive oxygen species in the cytoplasm.
Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo
Zhang, Lan,Fu, Leilei,Zhang, Shouyue,Zhang, Jin,Zhao, Yuqian,Zheng, Yaxin,He, Gu,Yang, Shengyong,Ouyang, Liang,Liu, Bo
, p. 2687 - 2701 (2017/04/06)
UNC-51-like kinase 1 (ULK1) is well-known to initiate autophagy, and the downregulation of ULK1 has been found in most breast cancer tissues. Thus, the activation of ULK1-modulated autophagy could be a promising strategy for breast cancer therapy. In this study, we found that ULK1 was remarkably downregulated in breast cancer tissue samples by The Cancer Genome Atlas (TCGA) analysis and tissue microarray (TMA) analysis, especially in triple negative breast cancer (TNBC). To design a ULK1 agonist, we integrated in silico screening and chemical synthesis to acquire a series of small molecule candidates. After rounds of kinase and anti-proliferative activity screening, we discovered the small molecule, LYN-1604, to be the best candidate for a ULK1 agonist. Additionally, we identified that three amino acid residues (LYS50, LEU53, and TYR89) were key to the activation site of LYN-1604 and ULK1 by site-directed mutagenesis and biochemical assays. Subsequently, we demonstrated that LYN-1604 could induce cell death, associated with autophagy by the ULK complex (ULK1-mATG13-FIP200-ATG101) in MDA-MB-231 cells. To further explore LYN-1604-induced autophagic mechanisms, we found some potential ULK1 interactors, such as ATF3, RAD21, and caspase3, by performing comparative microarray analysis. Intriguingly, we found that LYN-1604 induced cell death involved in ATF3, RAD21, and caspase3, accompanied by autophagy and apoptosis. Moreover, we demonstrated that LYN-1604 has potential for good therapeutic effects on TNBC by targeting ULK1-modulated cell death in vivo; thus making this ULK1 agonist a novel potential small-molecule drug candidate for future TNBC therapy.