6600-40-4Relevant articles and documents
Bioelectrocatalytic Conversion from N2 to Chiral Amino Acids in a H2/α-Keto Acid Enzymatic Fuel Cell
Cai, Rong,Chen, Hsiaonung,Chen, Hui,Dong, Fangyuan,Minteer, Shelley D.,Prater, Matthew B.
supporting information, p. 4028 - 4036 (2020/03/11)
Enzymatic electrosynthesis is a promising approach to produce useful chemicals with the requirement of external electrical energy input. Enzymatic fuel cells (EFCs) are devices to convert chemical energy to electrical energy via the oxidation of fuel at the anode and usually the reduction of oxygen or peroxide at the cathode. The integration of enzymatic electrosynthesis with EFC architectures can simultaneously result in self-powered enzymatic electrosynthesis with more valuable usage of electrons to produce high-value-added chemicals. In this study, a H2/α-keto acid EFC was developed for the conversion from chemically inert nitrogen gas to chiral amino acids, powered by H2 oxidation. A highly efficient cathodic reaction cascade was first designed and constructed. Powered by an applied voltage, the cathode supplied enough reducing equivalents to support the NH3 production and NADH recycling catalyzed by nitrogenase and diaphorase. The produced NH3 and NADH were reacted in situ with leucine dehydrogenase (LeuDH) to generate l-norleucine with 2-ketohexanoic acid as the NH3 acceptor. A 92% NH3 conversion ratio and 87.1% Faradaic efficiency were achieved. On this basis, a H2-powered fuel cell with hyper-thermostable hydrogenase (SHI) as the anodic catalyst was combined with the cathodic reaction cascade to form the H2/α-keto acid EFC. After 10 h of reaction, the concentration of l-norleucine achieved 0.36 mM with >99% enantiomeric excess and 82% Faradaic efficiency. From the broad substrate scope and the high enzymatic enantioselectivity of LeuDH, the H2/α-keto acid EFC is an energy-efficient alternative to electrochemically produce chiral amino acids for biotechnology applications.
Semi-rational hinge engineering: modulating the conformational transformation of glutamate dehydrogenase for enhanced reductive amination activity towards non-natural substrates
Liu, Yayun,Meng, Lijun,Wu, Jianping,Yang, Lirong,Yin, Xinjian,Zhou, Haisheng
, p. 3376 - 3386 (2020/06/09)
The active site is the common hotspot for rational and semi-rational enzyme activity engineering. However, the active site represents only a small portion of the whole enzyme. Identifying more hotspots other than the active site for enzyme activity engineering should aid in the development of biocatalysts with better catalytic performance. Glutamate dehydrogenases (GluDHs) are promising and environmentally benign biocatalysts for the synthesis of valuable chirall-amino acids by asymmetric reductive amination of α-keto acids. GluDHs contain an inter-domain hinge structure that facilitates dynamic reorientations of the domains relative to each other. Such hinge-bending conformational motions of GluDHs play an important role in regulating the catalytic activity. Thus, the hinge region represents a potential hotspot for catalytic activity engineering for GluDHs. Herein, we report semi-rational activity engineering of GluDHs with the hinge region as the hotspot. Mutants exhibiting significantly improved catalytic activity toward several non-natural substrates were identified and the highest activity increase reached 104-fold. Molecular dynamics simulations revealed that enhanced catalytic activity may arise from improving the open/closed conformational transformation efficiency of the protein with hinge engineering. In the batch production of three valuablel-amino acids, the mutants exhibited significantly improved catalytic efficiency, highlighting their industrial potential. Moreover, the catalytic activity of several active site tailored GluDHs was also increased by hinge engineering, indicating that hinge and active site engineering are compatible. The results show that the hinge region is a promising hotspot for activity engineering of GluDHs and provides a potent alternative for developing high-performance biocatalysts toward chirall-amino acid production.
Combinatorial Mutation Analysis of ω-Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone
Kim, Hong-Gon,Han, Sang-Woo,Shin, Jong-Shik
, p. 2594 - 2606 (2019/05/15)
ω-Transaminase (ω-TA) is an important enzyme for asymmetric synthesis of chiral amines. Rapid creation of a desirable ω-TA variant, readily available for scalable process operation, is demanded and has attracted intense research efforts. In this study, we aimed to develop a quantitative mutational analysis (i. e., R-analysis) that enables prediction of combinatorial mutation outcomes and thereby provides reliable guidance of enzyme engineering through combination of already characterized mutations. To this end, we determined three mutatable active-site residues of ω-TA from Ochrobactrum anthropi (i. e., leucine 57, tryptophan 58 and valine 154) by examining activities of nine alanine-scanning mutants for seven substrate pairs. The R-analysis of the mutatable residues is based on assessment of changes in relative activities for a series of structurally analogous substrates. Using three sets of substrates (five α-keto acids, six arylalkylamines and three arylalkyl ketones), we found that combination of two point mutations display additive effects of each mutational outcome such as steric relaxation for bulky substrates or catalytic enhancement for amination of ketones. Consistent with the R-analysis-based prediction, the ω-TA variant harboring triple alanine mutations, i. e. L57A, W58A and V154A, showed high activity improvements for bulky substrates, e. g. a 3.2×104-fold activity increase for 1-phenylbutylamine. The triple mutant even enabled asymmetric amination of isobutyrophenone, carrying a branched-chain alkyl substituent to be accepted in a small binding pocket that normally shows a steric limit up to an ethyl group, with >99% ee of a resulting (S)-amine. (Figure presented.).
Artificial Biocatalytic Cascade with Three Enzymes in One Pot for Asymmetric Synthesis of Chiral Unnatural Amino Acids
Zhou, Haisheng,Meng, Lijun,Yin, Xinjian,Liu, Yayun,Xu, Gang,Wu, Jianping,Wu, Mianbin,Yang, Lirong
supporting information, p. 6470 - 6477 (2019/11/02)
Two biocatalytic reactions, transamination catalyzed by transaminases and reductive amination catalyzed by amino acid dehydrogenases, can be used for asymmetric synthesis of optically pure unnatural amino acids. However, although transaminases show a great diversity and broad substrate spectrum, most transaminase reactions are reversible, while amino acid dehydrogenases catalyze reductive amination irreversibly but with strict substrate specificity. Accordingly, herein we developed a tri-enzyme one-pot reaction system to exploit the respective advantages of transaminases and amino acid dehydrogenases, while overcoming the disadvantages of each. In this work, representatives of all four subgroups of transaminases coupled with different amino acid dehydrogenases to produce five l- and four d- unnatural amino acid products, using ammonia and the co-enzyme NAD(P)H, which is regenerated by a robust alcohol dehydrogenase with 2-propanol as cheap cosubstrate. The complete conversion and high enantiopurity (ee > 99 %) of the products, demonstrated it as an ideal alternative for asymmetric synthesis of chiral amino acid compounds.
Stereoselective Synthesis of syn -γ-Hydroxynorvaline and Related α-Amino Acids
Berke?, Du?an,Caletková, O?ga,Ferko, Branislav,Jakubec, Pavol,Kolarovi?, Andrej,Puch?ová, Eva,Valachová, Dominika
, p. 4568 - 4575 (2019/12/11)
The total syntheses of three enantiomerically pure non-proteinogenic amino acids, l -norvaline, γ-oxonorvaline, and syn -γ-hydroxynorvaline, are reported. The chromatography-free route pivoted on the construction of highly enantiomerically enriched substituted α-amino-γ-oxopentanoic acid, from which all three members were accessed divergently via chemoselective and stereoselective reductions. The rapid synthesis of this key α-amino-γ-oxopentanoic acid was achieved by a highly diastereoselective crystallisation-driven three-component Mannich reaction from the readily available building blocks acetone, glyoxylic acid monohydrate, and (S)-(4-methoxyphenyl)ethylamine. The enantiomeric purity of all target molecules was confirmed by HPLC analysis, either of the amino acids or their derivatives.
Sustainable and Continuous Synthesis of Enantiopure l-Amino Acids by Using a Versatile Immobilised Multienzyme System
Velasco-Lozano, Susana,da Silva, Eunice S.,Llop, Jordi,López-Gallego, Fernando
, p. 395 - 403 (2017/11/13)
The enzymatic synthesis of α-amino acids is a sustainable and efficient alternative to chemical processes, through which achieving enantiopure products is difficult. To more address this synthesis efficiently, a hierarchical architecture that irreversibly co-immobilises an amino acid dehydrogenase with polyethyleneimine on porous agarose beads has been designed and fabricated. The cationic polymer acts as an irreversible anchoring layer for the formate dehydrogenase. In this architecture, the two enzymes and polymer colocalise across the whole microstructure of the porous carrier. This multifunctional heterogeneous biocatalyst was kinetically characterised and applied to the enantioselective synthesis of a variety of canonical and noncanonical α-amino acids in both discontinuous (batch) and continuous modes. The co-immobilised bienzymatic system conserves more than 50 % of its initial effectiveness after five batch cycles and 8 days of continuous operation. Additionally, the environmental impact of this process has been semiquantitatively calculated and compared with the state of the art.
Driving Transamination Irreversible by Decomposing Byproduct Α-Ketoglutarate into Ethylene Using Ethylene-Forming Enzyme
Meng, Li-Jun,Liu, Ya-Yun,Zhou, Hai-Sheng,Yin, Xin-Jian,Wu, Jian-Ping,Wu, Mian-Bin,Xu, Gang,Yang, Li-Rong
, p. 3309 - 3314 (2018/10/02)
The transformations of transaminases have been extensively studied as an approach to the production of chiral amino moieties. However, the low equilibrium conversion of the reaction is a critical disadvantage to transaminase application, and a strategy for shifting the reaction equilibrium is essential. Herein, we have developed a novel method to effectively prevent the reversibility of transamination by fully decomposing byproduct α-ketoglutarate into ethylene and carbon dioxide in situ using ethylene-forming enzyme (EFE). Two transaminases and one EFE were expressed in E. coli and purified to be used in the cascade reaction. After optimal reaction conditions were determined based on the enzymatic properties, a cascade reaction coupling transaminase with EFE was conducted and showed high efficiency in the synthesis of l-phosphinothricin. Finally, using this approach with only an equivalent amount of amino donor l-glutamate increased the conversions of various keto acids from 99%. This strategy shows great potential for transamination using glutamate as the amino donor.
One-Pot Preparation of d-Amino Acids Through Biocatalytic Deracemization Using Alanine Dehydrogenase and Ω-Transaminase
Han, Sang-Woo,Shin, Jong-Shik
, p. 3678 - 3684 (2018/10/20)
d-Amino acids are pharmaceutically important building blocks, leading to a great deal of research efforts to develop cost-effective synthetic methods. Preparation of d-amino acids by deracemization has been conceptually attractive owing to facile synthesis of racemic amino acids by Strecker synthesis. Here, we demonstrated biocatalytic deracemization of aliphatic amino acids into d-enantiomers by running cascade reactions; (1) stereoinversion of l-amino acid to a d-form by amino acid dehydrogenase and ω-transaminase and (2) regeneration of NAD+ by NADH oxidase. Under the cascade reaction conditions containing 100?mM isopropylamine and 1?mM NAD+, complete deracemization of 100?mM dl-alanine was achieved after 24?h with 95% reaction yield of d-alanine (> 99% eeD, 52% isolation yield). Graphical Abstract: [Figure not available: see fulltext.].
Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of L-norvaline from DL-norvaline
Qi, Yunlong,Yang, Taowei,Zhou, Junping,Zheng, Junxian,Xu, Meijuan,Zhang, Xian,Rao, Zhiming,Yang, Shang-Tian
, p. 104 - 109 (2017/03/23)
Perindopril is an effective antihypertensive drug in strong demand used to treat hypertension. L-norvaline is a vital intermediate of Perindopril production mainly produced by chemical synthesis with low purity. We developed an environmentally friendly method to produce L-norvaline with high purity based on a desymmetrization process. D-Norvaline was oxidized to the corresponding keto acid by D-amino acid oxidase from the substrate DL-norvaline. Asymmetric hydrogenation of the keto acid to L-norvaline was carried out by leucine dehydrogenase with concomitant oxidation of NADH to NAD+. A NADH regeneration system was introduced by overexpressing a formate dehydrogenase. The unwanted H2O2by-product generated during D-norvaline oxidation was removed by adding catalase. A total of 54.09?g/L of L-norvaline was achieved, with an enantiomeric excess over 99% under optimal conditions, with a 96.7% conversion rate. Our desymmetrization method provides an environmental friendly strategy for the production of enantiomerically pure L-norvaline in the pharmaceutical industry.
Efficient Enzymatic Preparation of13N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems
da Silva, Eunice S.,Gómez-Vallejo, Vanessa,Baz, Zuri?e,Llop, Jordi,López-Gallego, Fernando
, p. 13619 - 13626 (2016/09/13)
Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the13N-labelled amino acids l-[13N]alanine, [13N]glycine, and l-[13N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents.