Brief Articles
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 25 6439
12, 4222–4239. (e) Rivara, S.; Lorenzi, S.; Mor, M.; Plazzi, P. V.;
Spadoni, G. Analysis of structure-activity relationships for MT2
selective antagonists by melatonin MT1 and MT2 receptor models.
J. Med. Chem. 2005, 48, 4049–4060.
of the melatonin receptor subtypes. This will reveal important
stereoelectronic characteristics of the hormone’s receptor and
should lead to the development of high-affinity selective ligands.
(8) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K.; Tsotinis, A. Mapping
the melatonin receptor. 6. Melatonin agonists and antagonists derived
from 6H-isoindolo[2,1-a]indoles, 5,6-dihydroindolo[2,1-a]isoquinolines
and 6,7-dihydro-5H-benzo[c]azepino [2,1-a]indoles. J. Med. Chem.
2000, 43, 1050–1061.
(9) (a) Tsotinis, A.; Vlachou, M.; Papahatjis, D. P.; Calogeropoulou, T.;
Nikas, S. P. Mapping the melatonin receptor. 7. Subtype selective
ligands based on ꢀ-substituted N-acyl-5-methoxytryptamines and beta-
substituted N-acyl-5-methoxy-1-methyltryptamines. J. Med. Chem.
2006, 49, 3509–3519. (b) Garratt, P. J.; Travard, S.; Vonhoff, S.;
Tsotinis, A.; Sugden, D. Mapping the melatonin receptor. 4. Com-
parison of the binding affinities of a series of substituted phenylalky-
lamides. J. Med. Chem. 1996, 39, 1797–1805. (c) Garratt, P. J.;
Tsotinis, A. Synthesis of compounds as melatonin agonists and
antagonists. Mini ReV. Med. Chem. 2007, 7, 1075–1088.
(10) Assony, S. J. In Organic Sulfur Compounds; Kharasch, N., Ed.;
Pergamon Press: New York, 1961; p 326.
(11) Allen, M. S.; Hagen, T. J.; Trudell, M. L.; Codding, P. W.; Skolnick,
P. Synthesis of novel 3-substituted ꢀ-carbolines as benzodiazepine
receptor ligands: probing the benzodiazepine receptor pharmacophore.
J. Med. Chem. 1988, 31, 1854–1861.
(12) Linders, J. T.; Monn, J. A.; Mattson, M. V.; George, C.; Jacobson,
A. E. Synthesis and binding properties of MK-801 isothiocyanates;
(+)-3-isothiocyanato-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-
hepten-5,10-imine hydrochloride: a new, potent and selective elec-
trophilic affinity ligand for the NMDA receptor-coupled phencyclidine
binding site. J. Med. Chem. 1993, 36, 2499–2507.
Experimental Section
General Procedure 1 for the Preparation of Azides 5, 6,
23, 24, 30, 39, and 45. A solution of sodium azide (0.42 g, 7.63
mmol) in H2O (2 mL) was added dropwise to a stirred solution of
the appropriate bromide or chloride (for the synthesis of 45) (3.36
mmol) in DMF (6 mL) at room temperature. The resulting mixture
was then heated to 45 °C and stirred at this temperature for 3 h.
Upon completion of the reaction, the mixture was poured onto
crushed ice and extracted with AcOEt. The organic phase was
washed with brine, dried over Na2SO4, and concentrated in vacuo.
The residue obtained was purified by flash column chromatography
to give the title azides as pale-yellow oils.
General Procedure 2 for the Preparation of Isothiocyanates
7, 8, 25, 26, 31, 40, and 46. Carbon disulfide (4.36 g, 3.4 mL, 57.4
mmol) and triphenylphosphine (0.89 g, 3.06 mmol) were sequen-
tially added to a solution of the above azides (2.05 mmol) in THF
(15 mL). The suspension formed was stirred for 20 h at room
temperature, and upon completion of the reaction, the solvent was
removed in vacuo. The residue obtained was purified by flash
column chromatography to give the desired isothiocyanates as
yellowish oils.
Acknowledgment. The University of Athens group thanks
the EPEAEK II program Pythagoras IIsSupport of Universities
Research Groups (Grant KA 70/3/7993) for financial support.
The King’s College London group was supported by the
Wellcome Trust (grant GR065816).
(13) Adams, J. T.; Teal, P. M.; Sonders, A. S.; Tester, B.; Esherick, J. S.
Synthesis and characterization of an affinity label for brain receptors
to psychotomimetic benzomorphans: differentiation of σ-type and
phencyclidine receptors. Eur. J. Pharmacol. 1987, 142, 61–71.
(14) Rice, K. C.; Jacobson, A. E.; Burke, T. R., Jr.; Bajwa, B. S.; Streaty,
R. A. Irreversible ligands with high selectivity toward δ- and µ-opiate
receptors. Science 1983, 220, 314–316.
(15) Portoghese, P. S.; Sultana, M.; Takemori, A. E. Naltrindole 5′-
isothiocyanate: a non-equilibrium, highly selective δ-opioid receptor
antagonist. J. Med. Chem. 1990, 33, 1547–1548.
(16) Guo, Y.; Abadji, V.; Morse, K. L.; Fournier, D. J.; Li, X. (-)-11-
Hydroxy-7′-isothiocyanato-1′,1′-dimethylheptyl-∆8-THC: a novel, high-
affinity irreversible probe for the cannabinoid receptor in the brain.
J. Med. Chem. 1994, 37, 3867–3870.
Supporting Information Available: Experimental details on the
synthesis of the compounds in this paper, spectral data for all
compounds, elemental analysis data for key target compounds, and
pharmacological assay. This material is available free of charge
(17) Haring, R.; Kloog, Y.; Sokolovsky, M. Identification of polypeptides
of the phencyclidine receptor of rat hippocampus by photoaffinity
labeling with [3H]azidophencyclidine. Biochemistry 1986, 25, 612–
620.
(18) Sokolovsky, M. Photoaffinity labeling of muscarinic receptors. Phar-
macol. Ther. 1987, 32, 285–292.
(19) Leeb-Lundberg, L. M.; Cotecchia, S.; DeBlasi, A.; Caron, M. G.;
Lefkowitz, R. J. Regulation of adrenergic receptor function by
phosphorylation. I. Agonist-promoted desensitization and phospho-
rylation of alpha 1-adrenergic receptors coupled to inositol phospho-
lipid metabolism in DDT1 MF-2 smooth muscle cells. J. Biol. Chem.
1987, 262, 3098–3105.
(20) Kanety, H.; Fuchs, S. Immuno-photoaffinity labeling of the D2-
dopamine receptor. Biochem. Biophys. Res. Commun. 1988, 155, 930–
936.
(21) Raymond, J. R.; Fargin, A.; Lohse, J. M.; Regan, J. W.; Senogles,
S. E. Identification of the ligand-binding subunit of the human
5-hydroxytryptamine 1A receptor with N-(p-azido-m-[125I]iodophen-
ethyl)spiperone, a high affinity radioiodinated photoaffinity probe. Mol.
Pharmacol. 1989, 36, 15–21.
(22) Charalambous, A.; Yan, G.; Houston, D. B.; Howlett, A. C.; Compton,
D. R. 5′-Azido-∆8-THC: a novel photoaffinity label for the cannabinoid
receptor. J. Med. Chem. 1992, 35, 3076–3079.
(23) Nakayama, T. A.; Khorana, H. G. Orientation of retinal in bovine
rhodopsin determined by cross-linking using a photoactivatable
analogue of 11-cis-retinal. J. Biol. Chem. 1990, 265, 15762–15769.
(24) Kyba, E. P. Alkyl Azides and Nitrenes. In Azides and Nitrenes;
Scriven, E. F. V., Ed.; Academic Press, Inc.: Orlando, FL, 1971; pp
23–28.
(25) Tarzia, G.; Diamantini, G.; Di Giacomo, B.; Spadoni, G.; Esposti, D.
1-(2-Alkanamidoethyl)-6-methoxyindole derivatives: a new class of
potent indole melatonin analogues. J. Med. Chem. 1997, 40, 2003–
2010.
References
(1) Bartness, T. J.; Powers, J. B.; Hastings, M. H.; Bittman, E. L.;
Goldman, B. D. The timed infusion paradigm for melatonin delivery:
what has it taught us about the melatonin signal, its reception, and
the photoperiodic control of seasonal responses. J. Pineal Res. 1993,
15, 161–190.
(2) Garfinkel, D.; Laudon, M.; Nof, D.; Zisapel, N. Improvement of sleep
quality in elderly people by controlled-release melatonin. Lancet 1995,
346, 541–544.
(3) Wurtman, R. Ramelteon: a novel treatment for the treatment of
insomnia. Expert ReV. Neurother. 2006, 6, 957–964.
(4) Iakovou, K.; Varvaresou, A.; Kourounakis, A. P.; Stead, K.; Sugden,
D. Design, synthesis and biological evaluation of novel ꢀ-substituted
indol-3-yl ethylamido melatoninergic analogues. J. Pharm. Pharmacol.
2002, 54, 147–156.
(5) Molis, T. M.; Spriggs, L. L.; Jupiter, Y.; Hill, S. M. Melatonin
modulation of estrogen-regulated proteins, growth factors, and proto-
oncogenes in human breast cancer. J. Pineal Res. 1995, 18, 93–103.
(6) (a) Reppert, S. M.; Weaver, D. R.; Ebisawa, T. Cloning and
characterization of a mammalian melatonin receptor that mediates
reproductive and circadian responses. Neuron 1994, 13, 1177–1185.
(b) Reppert, S. M.; Godson, C.; Mahle, C. D.; Weaver, D. R.;
Slaugenhaupt, S. A. Molecular characterisation of a second melatonin
receptor expressed in human retina and brain: the Mel1b melatonin
receptor. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 8734–8738. (c)
Ebisawa, T.; Karne, S.; Lerner, M. R.; Reppert, S. M. Expression
cloning of a high-affinity melatonin receptor from Xenopus dermal
melanophores. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6133–6137.
(7) (a) Mor, M.; Plazzi, P. V.; Spadoni, G.; Tarzia, G. Melatonin. Curr.
Med. Chem. 1999, 6, 501–518. (b) Zlotos, D. P. Recent advances in
melatonin receptor ligands. Arch. Pharm. (Weinheim, Ger.) 2005, 338,
229–247. (c) Voronkov, A. E.; Ivanov, A. A.; Baskin, I. I.; Palyulin,
V. A.; Zefirov, N. S. Molecular modeling study of the mechanism of
ligand binding to human melatonin receptors. Dokl. Biochem. Biophys.
2005, 403, 284–288. (d) Uchikawa, O.; Fukatsu, K.; Tokunoh, R.;
Kawada, M.; Matsumoto, K. Synthesis of a novel series of tricyclic
indan derivatives as melatonin receptor agonists. J. Med. Chem. 2002,
(26) Spadoni, G.; Balsamini, C.; Bedini, A.; Diamantini, G.; Di Giacomo,
B. 2-[N-Acylamino(C1-C3)alkyl]indoles as MT1 melatonin receptor
partial agonists, antagonists, and putative inverse agonists. J. Med.
Chem. 1998, 41, 3624–3634.