C O M M U N I C A T I O N S
Scheme 2. Oxygen Transfer to Generate Iron(III)-Phenoxide and -Hydroxide Complexes on Non-heme Tris-Pyrrole Platforms
2000, 39, 5306-5317. (e) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel,
W. W.; Bukowski, M. R.; Stubna, A.; Muenck, E.; Nam, W.; Que, L., Jr.
Science 2003, 299, 1037-1039. (f) Lim, M. H.; Rohde, J.-U.; Stubna,
A.; Bukowski, M. R.; Costas, M.; Ho, R. Y. N.; Munck, E.; Nam, W.;
Que, L., Jr. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3665-3670. (g)
Klinker, E. J.; Kaizer, J.; Brennessel, W. W.; Woodrum, N. L.; Cramer,
C. J.; Que, L., Jr. Angew. Chem., Int. Ed. 2005, 44, 3690-3694. (h)
Martinho, M.; Banse, F.; Bartoli, J.-F.; Mattioli, T. A.; Battioni, P.; Horner,
O.; Bourcier, S.; Girerd, J.-J. Inorg. Chem. 2005, 44, 9592-9596.
(3) Selected iron-nitrido complexes: (a) Betley, T. A.; Peters, J. C. J. Am.
Chem. Soc. 2004, 126, 6252-6254. (b) Berry, J. F.; Bill, E.; Bothe, E.;
George, S. D.; Mienert, B.; Neese, F.; Wieghardt, K. Science 2006, 312,
1937-1941.
structural analysis, high-resolution mass spectrometry, and elemental
analyses establish this product as the terminal iron(III)-hydroxide
complex [tpaMesFe(OH)]- (6) with no evidence for intramolecular
ligand oxidation (Scheme 2). With the oxidative reactivity and
coordinative unsaturation of 5 established, we next examined the
activation of N2O. Exposure of 5 to N2O generates the same
terminal hydroxide in 23% recrystallized yield. The use of two-
electron oxygen-atom donors for this chemistry suggests a high-
valent Fe(IV)-oxo intermediate along the reaction pathway that
undergoes hydrogen atom abstraction from solvent (Figure 1). To
test this proposal, we performed oxidation reactions in the presence
of diphenylhydrazine (DPH) or cyclohexadiene (CHD) as external
hydrogen-atom sources. Indeed, when the reaction between 5 and
pyridine-N-oxide is carried out in the presence of DPH, azobenzene
is produced in 92% isolated yield. Analogous oxidations in the
presence of CHD produce benzene, although the yields are variable.
Taken together, the foregoing reactivity studies establish that a
putative non-heme oxoferryl species is viable and suggest an Fe-
(II)/Fe(IV) manifold for the observed non-heme iron pyrrole
reactivity.
(4) Selected iron-imido complexes: (a) Verma, A. K.; Nazif, T. N.; Achim,
C.; Lee, S. C. J. Am. Chem. Soc. 2000, 122, 11013-11014. (b) Brown,
S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322-
323. (c) Lucas, R. L.; Powell, D. R.; Borovik, A. S. J. Am. Chem. Soc.
2005, 127, 11596-11597. (d) Thomas, C. M.; Mankad, N. P.; Peters, J.
C. J. Am. Chem. Soc. 2006, 128, 4956-4957. (e) Bart, S. C.; Lobkovsky,
E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 5302-5303. (f)
Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari, T. R.;
Holland, P. L. Angew. Chem., Int. Ed. 2006, 45, 6868-6871. (g) Klinker,
E. J.; Jackson, T. A.; Jensen, M. P.; Stubna, A.; Juhasz, G.; Bominaar, E.
L.; Mu¨nck, E.; Que, L., Jr. Angew. Chem., Int. Ed. 2006, 45, 7394-7397.
(5) (a) Banks, R. G. S.; Henderson, R. J.; Pratt, J. M. Chem. Commun. 1967,
387-388. (b) Banks, R. G. S.; Henderson, R. J.; Pratt, J. M. J. Chem.
Soc. (A) 1968, 2886-2889.
(6) Bottomley, F.; Lin, I. J. B.; Mukaida, M. J. Am. Chem. Soc. 1980, 102,
5238-5242.
(7) (a) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1971, 93, 6476-6480. (b)
Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. J. Am. Chem. Soc. 1987,
109, 5538-5539. (c) Vaughan, G. A.; Hillhouse, G. L.; Lum, R. T.;
Buchwald, S. L.; Rheingold, A. L. J. Am. Chem. Soc. 1988, 110, 7215-
7217. (d) Smith, M. R., III; Matsunaga, P. T.; Andersen, R. A. J. Am.
Chem. Soc. 1993, 115, 7049-7050. (e) Matsunaga, P. T.; Hillhouse, G.
L.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 2075-2077. (f) Groves,
J. T.; Roman, J. S. J. Am. Chem. Soc. 1995, 117, 5594-5595. (g) Koo,
K.; Hillhouse, G. L.; Rheingold, A. L. Organometallics 1995, 14, 456-
460. (h) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.;
Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117, 4999-5000. (i) Kaplan,
A. W.; Bergman, R. G. Organometallics 1998, 17, 5072-5085. (j)
Pamplin, C. B.; Ma, E. S. F.; Safari, N.; Rettig, S. J.; James, B. R. J. Am.
Chem. Soc. 2001, 123, 8596-8597. (k) Lee, J. H.; Pink, M.; Tomaszewski,
J.; Fan, H.; Caulton, K. G. J. Am. Chem. Soc. 2007, 129, 8706-8707.
(8) For Fe-zeolite catalyzed oxidations with N2O, see: Kharitonov, A. S.;
Sheveleva, G. A.; Panov, G. I.; Sobolev, V. I.; Paukshtis, Y. A.;
Romannikov, V. N. Appl. Catal., A 1993, 98, 33-43.
(9) Shi, Y.; Cao, C.; Odom, A. L. Inorg. Chem. 2004, 43, 275-281.
(10) Tanski, J. M.; Parkin, G. Inorg. Chem. 2003, 42, 264-266.
(11) (a) Cruse, R. W.; Kaderli, S.; Meyer, C. J.; Zuberbuehler, A. D.; Karlin,
K. D. J. Am. Chem. Soc. 1988, 110, 5020-5024. (b) Jensen, M. P.; Lange,
S. J.; Mehn, M. P.; Que, E. L.; Que, L., Jr. J. Am. Chem. Soc. 2003, 125,
2113-2128. (c) Yamashita, M.; Furutachi, H.; Tosha, T.; Fujinami, S.;
Saito, W.; Maeda, Y.; Takahashi, K.; Tanaka, K.; Kitagawa, T.; Suzuki,
M. J. Am. Chem. Soc. 2007, 129, 2-3.
To close, we have presented a new non-heme iron pyrrole
platform and its ability to activate N2O for intra- and intermolecular
oxidation reactions. This work represents a rare homogeneous
system capable of mediating oxidative O-atom transfer from N2O.
Given the demonstrated potency of the putative oxoferryl interme-
diate, opportunities for stoichiometric or catalytic oxidations with
N2O are promising. In addition to probing spectroscopic and
structural features of the active species generated in these oxidation
reactions, we are exploring new pyrrole platforms to expand the
intermolecular reactivity of these systems.
Acknowledgment. We thank the University of California,
Berkeley, the Dreyfus, Beckman, Packard, and Sloan Foundations,
and the LBNL Chemical Sciences Division for funding this work.
W.H.H. was also supported by an Arkema graduate fellowship.
Supporting Information Available: Synthetic and experimental
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
(12) (a) Cummins, C. C.; Lee, J.; Schrock, R. R.; Davis, W. M. Angew. Chem.,
Int. Ed. Engl. 1992, 31, 1501-1503. (b) Ray, M.; Golombek, A.; Hendrich,
M. P.; Young, V. G., Jr.; Borovik, A. S. J. Am. Chem. Soc. 1996, 118,
6084-6085. (c) Ray, M.; Hammes, B.; Yap, G. P. A.; Rheingold, A. L.;
Borovik, A. S. Inorg. Chem. 1998, 37, 1527-1532.
(13) While this manuscript was in press, an alternative synthesis of the mesityl
tpa ligand appeared: Wampler, K. M.; Schrock, R. R. Inorg. Chem. 2007,
46, 8463-8465.
References
(1) Groves, J. T. J. Inorg. Biochem. 2006, 100, 434-447.
(2) Selected iron-oxo complexes: (a) Que, L. Acc. Chem. Res. 2007, 40, 493-
500. (b) Nam, W. Acc. Chem. Res. 2007, 40, 522-531. (c) MacBeth, C.
E.; Golombek, A. P.; Young, V. G., Jr.; Yang, C.; Kuczera, K.; Hendrich,
M. P.; Borovik, A. S. Science 2000, 289, 938-941. (d) Grapperhaus, C.
A.; Mienert, B.; Bill, E.; Weyhermueller, T.; Wieghardt, K. Inorg. Chem.
JA076842G
9
J. AM. CHEM. SOC. VOL. 129, NO. 49, 2007 15129