C O M M U N I C A T I O N S
Table 2. Diastereoselective Reductive Cyclization of Acetylenic
Acknowledgment. Acknowledgment is made to the Robert A.
Welch Foundation, Johnson & Johnson, and the NIH-NIGMS
(Grant RO1-GM69445) for partial support of this research. Dr.
Ulrich Scholz is thanked for a generous donation of (R)-Cl,MeO-
BIPHEP.10
Aldehydes via Rhodium Catalyzed Hydrogenationa
Supporting Information Available: Spectral data for all new
1
compounds; scanned images of H and 13C NMR spectra and chiral
stationary phase HPLC traces; single-crystal X-ray diffraction data for
the 2,4-dinitrobenzoate derived from compound 1b and the p-bro-
mobenzoate derived from 14b. This material is available free of charge
a Cited yields are of isolated material. See Supporting Information for
further details.
Table 3. Optically Enriched R-Hydroxy Ketones via Ozonolysis of
Reductive Cyclization Products 7b and 9ba
References
(1) For selected reviews encompassing intra- and intermolecular direct
reductive coupling of alkynes to carbonyl partners, see (a) Ojima, I.;
Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. ReV. 1996, 96, 635. (b)
Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (c) Montgomery, J.;
Amarashinghe, K. K. D.; Chowdhury, S. K.; Oblinger, E.; Seo, J.;
Savchenko, A. V. Pure Appl. Chem. 2002, 74, 129. (d) Ikeda, S.-I. Angew.
Chem., Int. Ed. 2003, 42, 5120. (e) Miller, K. M.; Molinaro, C.; Jamison,
T. F. Tetrahedron Asymm. 2003, 3619. (f) Montgomery, J. Angew. Chem.,
Int. Ed. 2004, 43, 3890. (f) Jang, H.-Y.; Krische, M. J. Acc. Chem. Res.
2004, 37, 653.
a Cited yields are of isolated material. See Supporting Information for
further details.
Scheme 1. Plausible Catalytic Cycle as Supported by 2H-Labeling
(2) Alkyne reductive coupling may be achieved indirectly via alkyne
hydrometalation using hydroboranes or Cp2ZrHCl followed by transmeta-
lation to afford organozinc reagents, which participate in catalyzed
enantioselective additions to aldehydes: (a) Oppolzer, W.; Radinov, R.
HelV. Chim. Acta 1992, 75, 170. (b) Oppolzer, W.; Radinov, R. J. Am.
Chem. Soc. 1993, 115, 1593. (c) Soai, K.; Takahashi, K. J. Chem. Soc.,
Perkin Trans. 1 1994, 1257. (d) Wipf, P.; Xu, W. Tetrahedron Lett. 1994,
35, 5197. (e) Wipf, P.; Xu, W. Org. Synth. 1996, 74, 205. (f) Wipf, P.;
Ribe, S. J. Org. Chem. 1998, 63, 6454. (g) Oppolzer, W.; Radinov, R.
N.; El-Sayed, E. J. Org. Chem. 2001, 66, 4766. (h) Dahmen, S.; Bra¨se,
S. Org. Lett. 2001, 3, 4119. (i) Ji, J.-X.; Qiu, L.-Q.; Yip, C. W.; Chan, A.
S. C. J. Org. Chem. 2003, 68, 1589. (j) Lurain, A. E.; Walsh, P. J. J. Am.
Chem. Soc. 2003, 125, 10677. (k) Ko, D.-H.; Kang, S.-W.; Kim, K. H.;
Chung, Y.; Ha, D.-C. Bull. Korean Chem. Soc. 2004, 25, 35. (l) Jeon,
S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729.
(3) Ojima, I.; Tzamarioudaki, M.; Tsai, C.-Y. J. Am. Chem. Soc. 1994, 116,
3643.
(4) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787.
diastereoselection (Table 2). Finally, application of this methodology
to the synthesis of R-hydroxy ketones is achieved through ozon-
olysis of cyclization products 7b and 9b (Table 3). The assignment
of absolute stereochemistry is based upon X-ray crystallographic
analysis of the 2,4-dinitrobenzoate derived from 1b. Generalization
of this assignment to systems that differ significantly in structure
should be made with caution. The relative stereochemical assign-
ment of 13b-15b is supported by single-crystal X-ray diffraction
analysis of the p-bromobenzoate derived from 14b. Attempted six-
membered ring formation provides products of conventional alkyne
hydrogenation.
(5) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b)
Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1999, 121, 6098. (c)
Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6950. (d)
Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126,
3698. (e) Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am.
Chem. Soc. 2005, 127, 13156.
(6) (a) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221. (b)
Miller, K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003,
125, 3442.
(7) (a) Huddleston, R. R.; Jang, H.-Y.; Krische, M. J. J. Am. Chem. Soc.
2003, 125, 11488. (b) Jang, H.-Y.; Huddleston, R. R.; Krische, M. J. J.
Am. Chem. Soc. 2004, 126, 4664. (c) Kong, J.-R.; Cho, C.-W.; Krische,
M. J. J. Am. Chem. Soc. 2005, 127, 11269. (d) Kong, J.-R.; Ngai, M.-Y.;
Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (e) Cho, C.-W.; Krische,
M. J. Org. Lett. 2006, 8, 891.
Reductive cyclization of acetylenic aldehyde 7a under a deute-
rium atmosphere provides, after chromatographic isolation, deuterio-
7b. This result is consistent with a catalytic mechanism involving
oxidative coupling followed by hydrogenolytic cleavage of the
resulting metallacycle via σ bond metathesis. The acidic additive
may assist cleavage of the metallacyclic intermediate, as previously
proposed.7d Alternatively, it may suppress proton loss from cationic
rhodium dihydrides to afford neutral monohydride complexes,
which appear less prone to engage in oxidative coupling pathways
(Scheme 1).11
In summary, exposure of acetylenic aldehydes to gaseous
hydrogen in the presence of chirally modified rhodium catalysts
enables highly enantioselective reductive cyclization. These studies
underscore the key role of acidic additives in hydrogen-mediated
C-C coupling and support the feasibility of related intermolecular
alkyne-electrophile couplings.
(8) For rhodium catalyzed enantioselective cycloisomerization, hydrosilylation-
cyclization and reductive cyclization of 1,6-enynes, see (a) Ping, C.; Zhang,
X. Angew. Chem., Int. Ed. 2000, 39, 4104. (b) Lei, A.; He, M.; Wu, S.;
Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 3457. (c) Lei, A.; Waldkirch,
J. P.; He, M. Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 4526. (d) Lei,
A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 11472. (e)
Chakrapani, H.; Liu, C.; Widenhoefer, R. A. Org. Lett. 2003, 5, 157. (f)
Jang, H.-Y.; Hughes, F. W.; Gong, H.; Zhang, J.; Brodbelt, J. S.; Krische,
M. J. Am. Chem. Soc. 2005, 127, 6174.
(9) Rhodium catalyzed arylatiVe cyclization of acetylenic carbonyl compounds
has been described: (a) Miura, T.; Shimada, M.; Murakami, M. Synlett
2005, 667. (b) Shintani, R.; Okamoto, K.; Otomary, Y.; Ueyama, K.;
Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (b) Miura, T.; Shimada,
M.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 7598. (c) Matsuda,
T.; Makino, M.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 4608.
(10) (a) Laue, C.; Schro¨der, G.; Arlt, D. Eur. Pat. 749973 A1, 1996. (b) Driesen-
Holscher, B.; Kralik, J.; Agel, F.; Steffens, C.; Hu, C. AdV. Synth. Catal.
2004, 346, 979.
(11) Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-
VHC Verlag GmbH & Co.: Weinheim, Germany, 2005.
JA0637954
9
J. AM. CHEM. SOC. VOL. 128, NO. 33, 2006 10675