7458 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 23
Sweeney et al.
(3) Basavapathruni, A.; Anderson, K. S. Reverse transcription of the HIV-1
pandemic. FASEB J. 2007, 21, 3795–3808.
(4) Boone, L. Next-generation HIV-1 non-nucleoside reverse transcriptase
inhibitors. Curr. Opin. InVest. Drugs 2006, 7, 128–135.
(5) Balzarini, J. Current status of the non-nucleoside reverse transcriptase
inhibitors of human immunodeficiency virus type 1. Curr. Top. Med.
Chem. 2004, 4, 921–944.
(6) Sweeney, Z. K.; Klumpp, K. Improving non-nucleoside reverse
transcriptase inhibitors for first-line treatment of HIV infection: the
development pipeline and recent clinical data. Curr. Opin. Drug
DiscoVery DeV. 2008, 11, 458–470.
(7) Xia, Q.; Radzio, J.; erson, K.; Sluis, C. Probing nonnucleoside
inhibitor-induced active-site distortion in HIV-1 reverse transcriptase
by transient kinetic analyses. Protein Sci. 2007, 16, 1728–1737.
(8) Jorgensen, W. L.; Ruiz, C.; Tirado, R.; Basavapathruni, A.; Anderson,
K. S.; Hamilton, A. D. Computer-aided design of non-nucleoside
inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett.
2006, 16, 663–667.
(9) Zhou, Z.; Madrid, M.; Evanseck, J.; Madura, J. Effect of a bound
non-nucleoside RT inhibitor on the dynamics of wild-type and mutant
HIV-1 reverse transcriptase. J. Am. Chem. Soc. 2005, 127, 17253–
17260.
(10) Teague, S. J. Implications of protein flexibility for drug discovery.
Nat. ReV. Drug DiscoVery 2003, 2, 527–541.
(11) Hopkins, A. L.; Ren, J.; Esnouf, R. M.; Willcox, B. E.; Jones, E. Y.;
Ross, C.; Miyasaka, T.; Walker, R. T.; Tanaka, H.; Stammers, D. K.;
Stuart, D. I. Complexes of HIV-1 reverse transcriptase with inhibitors
of the HEPT series reveal conformational changes relevant to the
design of potent non-nucleoside inhibitors. J. Med. Chem. 1996, 39,
1589–1600.
(12) Hopkins, A. L.; Ren, J.; Milton, J.; Hazen, R. J.; Chan, J. H.; Stuart,
D. I.; Stammers, D. K. Design of non-nucleoside inhibitors of HIV-1
reverse transcriptase with improved drug resistance properties. 1.
J. Med. Chem. 2004, 47, 5912–5922.
(13) Ren, J.; Stammers, D. K. HIV reverse transcriptase structures:
designing new inhibitors and understanding mechanisms of drug
resistance. Trends Pharmacol. Sci. 2005, 26, 4–7.
(14) Ren, J.; Milton, J.; Weaver, K. L.; Short, S. A.; Stuart, D. I.; Stammers,
D. K. Structural basis for the resilience of efavirenz (DMP-266) to
drug resistance mutations in HIV-1 reverse transcriptase. Structure
2000, 8, 1089–1094.
(15) Das, K.; Clark, A. D., Jr.; Lewi, P. J.; Heeres, J.; de Jonge, M. R.;
Koymans, L. M.; Vinkers, H. M.; Daeyaert, F.; Ludovici, D. W.;
Kukla, M. J.; De, C. B.; Kavash, R. W.; Ho, C. Y.; Ye, H.;
Lichtenstein, M. A.; Andries, K.; Pauwels, R.; de Bethune, M. P.;
Boyer, P. L.; Clark, P.; Hughes, S. H.; Janssen, P. A.; Arnold, E.
Roles of conformational and positional adaptability in structure-based
design of TMC125-R165335 (etravirine) and related non-nucleoside
reverse transcriptase inhibitors that are highly potent and effective
against wild-type and drug-resistant HIV-1 variants. J. Med. Chem.
2004, 47, 2550–2560.
(16) Cantrell, A. S.; Engelhardt, P.; Hogberg, M.; Jaskunas, S. R.;
Johansson, N. G.; Jordan, C. L.; Kangasmetsa, J.; Kinnick, M. D.;
Lind, P.; Morin, J. M., Jr.; Muesing, M. A.; Noreen, R.; Oberg, B.;
Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.;
West, S. J.; Zhang, H. Phenethylthiazolylthiourea (PETT) compounds
as a new class of HIV-1 reverse transcriptase inhibitors. 2. Synthesis
and further structure-activity relationship studies of PETT analogs.
J. Med. Chem. 1996, 39, 4261–4274.
(17) Romines, K.; Freeman, G.; Schaller, L.; Cowan, J.; Gonzales, S.;
Tidwell, J.; Andrews, C.; Stammers, D.; Hazen, R.; Ferris, R.; Short,
S.; Chan, J.; Boone, L. Structure-activity relationship studies of novel
benzophenones leading to the discovery of a potent, next generation
HIV nonnucleoside reverse transcriptase inhibitor. J. Med. Chem. 2006,
49, 727–739.
(18) Girardet, J.-L.; Koh, Y.-H.; De La Rosa, M.; Gunic, E.; Zhang, Z.;
Hamatake, R.; Yeh, L. The Discovery of RDEA806, a Potent New
HIV NNRTI in Phase 1 Clinical Trials. Presented at the 47th
Interscience Conference on Antimicrobial Agents and Chemotherapy,
Chicago, IL, 2007; H-1040.
(b) Sweeney, Z. K.; Acharya, S.; Briggs, A.; Dunn, J. P.; Elworthy,
T. R.; Fretland, J.; Giannetti, A. M.; Heilek, G.; Li, Y.; Kaiser, A. C.;
Martin, M.; Saito, Y. D.; Smith, M.; Suh, J. M.; Swallow, S.; Wu, J.;
Hang, J. Q.; Zhou, A. S.; Klumpp, K. Discovery of triazolinone non-
nucleoside inhibitors of HIV reverse transcriptase. Bioorg. Med. Chem.
Lett. 2008, 4348–4351.
(20) Following the completion of this work, a closely related series of
annulated pyrazoles was disclosed: Tucker, T. J.; Saggar, S.; Sisko,
J. T.; Tynebor, R. M.; Felock, P. J.; Flynn, J. A.; Lai, M.-T.; Liang,
Y.; Liu, M.; McGaughey, G.; Miller, M. D.; Moyer, G.; Munshi, V.;
Poehnelt, R. A.; Prasad, S.; Sanchez, R.; Torrent, M.; Vacca, J. P.;
Williams, T. M.; Wan, B.-L.; Yan, Y. The Design and Synthesis of
Diaryl Ether Second Generation HIV-1 Non-Nucleoside Reverse
Transcriptase Inhibitors (NNRTIs) with Enhanced Potency versus Key
Clinical Mutations. Presented at the 235th National Meeting of the
American Chemical Society, New Orleans, LA, 2008; MEDI-174.
(21) Mager, P. P. Evidence of a butterfly-like configuration of structurally
diverse allosteric inhibitors of the HIV-1 reverse transcriptase. Drug
Des. DiscoVery 1996, 14, 241–257.
(22) (a) Ren, J.; Chamberlain, P. P.; Stamp, A.; Short, S. A.; Weaver, K. L.;
Romines, K. R.; Hazen, R.; Freeman, A.; Ferris, R. G.; rews, C. W.;
Boone, L.; Chan, J. H.; Stammers, D. K. Structural basis for the
improved drug resistance profile of new generation benzophenone non-
nucleoside HIV-1 reverse transcriptase inhibitors. J. Med. Chem. 2008,
51, 5000–5008. (b) Rodgers, D. W.; Gamblin, S. J.; Harris, B. A.;
Ray, S.; Culp, J. S.; Hellmig, B.; Woolf, D. J.; Debouck, C.; Harrison,
S. C. The structure of unliganded reverse transcriptase from the human
immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U.S.A. 1995,
92, 1222–1226.
(23) Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Structure of a
covalently trapped catalytic complex of HIV-1 reverse transcriptase:
implications for drug resistance. Science 1998, 282, 1669–1675.
(24) Paulini, R.; Muller, K.; Diederich, F. Orthogonal multipolar interactions
in structural chemistry and biology. Angew. Chem., Int. Ed. 2005, 44,
1788–1805.
(25) (a) Toth, G.; Bowers, S. G.; Truong, A. P.; Probst, G. The role and
significance of unconventional hydrogen bonds in small molecule
recognition by biological receptors of pharmaceutical relevance. Curr.
Pharm. Des. 2007, 13, 3476–3493. (b) Ren, J.; Nichols, C.; Bird, L. E.;
Fujiwara, T.; Sugimoto, H.; Stuart, D. I.; Stammers, D. K. Binding of
the second generation non-nucleoside inhibitor S-1153 to HIV-1
reverse transcriptase involves extensive main chain hydrogen bonding.
J. Biol. Chem. 2000, 275, 14316–14320.
(26) Das, K.; Lewi, P.; Hughes, S. H.; Arnold, E. Crystallography and the
design of anti-AIDS drugs: conformational flexibility and positional
adaptability are important in the design of non-nucleoside HIV-1
reverse transcriptase inhibitors. Prog. Biophys. Mol. Biol. 2005, 88,
209–231.
(27) Hopkins, A. L.; Ren, J.; Tanaka, H.; Baba, M.; Okamato, M.; Stuart,
D. I.; Stammers, D. K. Design of MKC-442 (emivirine) analogues
with improved activity against drug-resistant HIV mutants. J. Med.
Chem. 1999, 42, 4500–4505.
(28) Das, K.; Bauman, J. D.; Clark, A. D.; Frenkel, Y. V.; Lewi, P. J.;
Shatkin, A. J.; Hughes, S. H.; Arnold, E. High-resolution structures
of HIV-1 reverse transcriptase/TMC-278 complexes: strategic flex-
ibility explains potency against resistant mutations. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 1466–1471.
(29) (a) Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.;
Herdewijn, P.; Desmyter, J.; De, C. E. Rapid and automated tetrazo-
lium-based colorimetric assay for the detection of anti-HIV compounds.
J. Virol. Methods 1988, 20, 309–321. (b) Petropoulos, C. J.; Parkin,
N. T.; Limoli, K. L.; Lie, Y. S.; Wrin, T.; Huang, W.; Tian, H.; Smith,
D; Winslow, G. A.; Capon, D. J.; Whitcomb, J. M. A novel phenotypic
drug susceptibility assay for human immunodeficiency virus type 1.
Antimicrob. Agents Chemother. 2000, 44, 920–928.
(30) DeLano, W. L. The PyMOL Molecular Graphics System. http://
(31) Emsley, P.; Cowtan, K. Coot: model-building tools for molecular
graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004, 60, 2126–
2132.
(19) (a) Sweeney, Z. K.; Dunn, J. P.; Li, Y.; Heilek, G.; Dunten, P.;
Elworthy, T. R.; Han, X.; Harris, S. F.; Hirschfeld, D. R.; Hogg, J. H.;
Huber, W.; Kaiser, A. C.; Kertesz, D. J.; Kim, W.; Mirzadegan, T.;
Roepel, M. G.; Saito, Y. D.; Silva, T. M.; Swallow, S.; Tracy, J. L.;
Villasen˜or, A.; Vora, H.; Zhou, A. S.; Klumpp, K. Discovery and
optimization of pyridazinone non-nucleoside inhibitors of HIV-1
reverse transcriptase. Bioorg. Med. Chem. Lett. 2008, 18, 4352–4354.
(32) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of
macromolecular structures by the maximum-likelihood method. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240–255.
(33) The CCP4 suite: programs for protein crystallography. Acta Crystal-
logr., Sect. D: Biol. Crystallogr. 1994, 50, 760-763.
JM800527X