Organometallic Enantiomeric Scaffolds
in ways that allow access to diverse families of important
molecules. The principal examples of organic enantiomeric
scaffolding for the enantiocontrolled synthesis of complex
molecules have come from the laboratories of Comins,18-24
Marazano,25-29 Husson/Royer,30-34 and Bosch,35-44 among
others (Figure 1).45,46
Although less well-studied, organometallic enantiomeric
scaffolding represents another approach to enantiocontrolled
synthesis.47 Organometallic enantiomeric scaffolds are simple,
readily available, single enantiomers of air-stable organometallic
π-complexes of key unsaturated ligands from which diVerse
families of important molecular structures can be obtained in
(14) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259-281.
(15) Trost, B. M. Science (Washington, D.C.) 1991, 254, 1471-1477.
(16) Luo, S.; Peng, Y.; Zhang, B.; Wang, P. G.; Cheng, J.-P. Curr. Org.
Synth. 2004, 1, 405-429.
(17) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686-
694.
FIGURE 1. Enantiomeric scaffolds.
high enantiopurity. The metal and its auxiliary ligands provide
a dominant regio- and stereocontrol element on the scaffold that
allows the predictable introduction of new stereocenters, and
that influences novel and strategic reaction pathways that are
not achievable with traditional organic systems.
(18) Comins, D. L.; King, L. S.; Smith, E. D.; Fevrier, F. C. Org. Lett.
2005, 7, 5059-5062.
(19) Comins, D. L.; Kuethe, J. T.; Miller, T. M.; Fevrier, F. C.; Brooks,
C. A. J. Org. Chem. 2005, 70, 5221-5234.
(20) Kuethe, J. T.; Comins, D. L. J. Org. Chem. 2004, 69, 5219-5231.
(21) Comins, D. L.; Killpack, M. O.; Despagnet, E.; Zeller, E. Hetero-
cycles 2002, 58, 505-519.
Organometallic enantiomeric scaffolds can be viable partners
in the multistep enantiocontrolled construction of complex
molecules that bear multiple stereocenters if (1) single enanti-
omers of the air and moisture-stable, easily handled metal
complexes are readily prepared in high yield and on large scale
from readily available precursors, (2) the complexation, sub-
sequent functionalization reactions, and demetalation occur in
a predictable way with maintenance of stereochemical integrity,
and (3) the stoichiometric nature of the chemistry is mitigated
by the use of a single metal moiety over multiple steps to impart
novel reactivity and selectivity to the scaffold while, at the same
time, controlling the introduction of multiple stereocenters at
multiple sites around the unsaturated ligand.
(22) Joseph, S.; Comins, D. L. Curr. Opin. Drug DiscoVery DeV. 2002,
5, 870-880.
(23) Comins, D. L.; Joseph, S. P.; Hong, H.; Al-awar, R. S.; Foti, C. J.;
Zhang, Y.-M.; Chen, X.; LaMunyon, D. H.; Guerra-Weltzien, M. Pure Appl.
Chem. 1997, 69, 477-481.
(24) Comins, D. L.; Joseph, S. P. Alkaloid Synthesis using 1-Acylpy-
ridinium Salts as Intermediates. In AdVances in Nitrogen Heterocycles;
Moody, C. J., Ed.; JAI Press Inc.: New York, 1996; Vol. 2, pp 251-294.
(25) Viana, G. H. R.; Santos, I. C.; Alves, R. B.; Gil, L.; Marazano, C.;
de Freitas Gil, R. P. Tetrahedron Lett. 2005, 46, 7773-7776.
(26) dos Santos, D. C.; de Freitas Gil, R. P.; Gil, L.; Marazano, C.
Tetrahedron Lett. 2001, 42, 6109-6111.
(27) Guilloteau-Berin, B.; Compe`re, D.; Gil, L.; Marazano, C.; Das, B.
C. Eur. J. Org. Chem. 2000, 8, 1391-1399.
(28) Genisson, Y.; Marazano, C.; Mehmandoust, M.; Gnecco, D.; Das,
B. C. Synlett 1992, 4, 431-434.
(29) Gnecco, D.; Marazano, C.; Das, B. C. J. Chem. Soc., Chem.
Commun. 1991, 9, 625-626.
(47) In contrast to the little studied use of metal complexes as organo-
metallic enantiomeric scaffolds, organometallic π-complexes for non-
scaffolding approaches to stereocontrolled organic synthesis have been
broadly investigated (Paley, R. S. Chem. ReV. 2002, 102, 1493-1524. Pape,
A. R.; Kaliappan, K. P.; Ku¨ndig, E. P. Chem. ReV. 2000, 100, 2917-2940).
Many groups have been involved in the use of metal π-complexes in
stereocontrolled organic synthesis dating back to the 1960’s. Some of the
seminal contributors are Faller (Faller, J. W.; Rosan, A. M. Ann. N.Y. Acad.
Sci. 1977, 295, 186-91), Semmelhack (Semmelhack, M. F. Pure Appl.
Chem. 1981, 53, 2379-2388. Semmelhack, M. F. J. Organomet. Chem.
Libr. 1976, 1, 361-395), Pearson (Pearson, A. J.; Mesaros, E. F. Org. Lett.
2002, 4, 2001-2004. Pearson, A. J.; Mesaros, E. F. Org. Lett. 2001, 3,
2665-2668. Pearson, A. J.; Neagu, I. B. J. Org. Chem. 1999, 64, 2890-
2896. Pearson, A. J.; Douglas, A. R. Organometallics 1998, 17, 1446-
1448. Pearson, A. J.; Neagu, I. B.; Pinkerton, A. A.; Kirschbaum, K.; Hardie,
M. J. Organometallics 1997, 16, 4346-4354. Pearson, A. J. Recent
Developments in the Synthetic Applications of Organoiron and Organo-
molybdenum Chemistry. In AdVances in Metal-Organic Chemistry; Lie-
beskind, L. S., Ed.; JAI Press: Greenwich, CT, 1989; Vol. I, p 1), Uemura
(Uemura, M. Top. Organomet. Chem. 2004, 7, 129-156), Jaouen (Jaouen,
G. Ann. N.Y. Acad. Sci. 1977, 295, 59-78), and Stephenson (Stephenson,
G. R.; Finch, H.; Owen, D. A.; Swanson, S. Tetrahedron 1993, 49, 5649-
5662). More recent efforts with a focus on “dearomatization” reactions of
arenes and heteroarenes have been described by Harman (Harman, W. D.
Top. Organomet. Chem. 2004, 7, 95-127) and Ku¨ndig (Pape, A. R.;
Kaliappan, K. P.; Ku¨ndig, E. P. Chem. ReV. 2000, 100, 2917-2940. Ku¨ndig,
E. P. Pure Appl. Chem. 1985, 57, 1855-1864), while Liu (Li, C.-L.; Liu,
R.-S. Chem. ReV. 2000, 100, 3127-3162), Gre´e (Lellouche, J. P.; Gigou-
Barbedette, A.; Gre´e, R. Bull. Soc. Chim. Fr. 1993, 129, 605-624), and
Donaldson (Donaldson, W. A.; Shang, L.; Rogers, R. D. Organometallics
1994, 13, 6-7. Tao, C. L.; Donaldson, W. A. J. Org. Chem. 1993, 58,
2134-2143. Donaldson, W. A.; Jin, M. J. Tetrahedron 1993, 49, 8787-
8794) have investigated lateral stereocontrol in metal complex-based
synthesis.
(30) Husson, H.-P.; Royer, J. Chem. Soc. ReV. 1999, 28, 383-394.
(31) Royer, J.; Husson, H. P. Janssen Chim. Acta 1993, 11, 3-8.
(32) Yue, C.; Royer, J.; Husson, H.-P. J. Org. Chem. 1992, 57, 4211-
4214.
(33) Maury, C.; Royer, J.; Husson, H. P. Tetrahedron Lett. 1992, 33,
6127-6130.
(34) Husson, H. P. J. Nat. Prod. 1985, 48, 894-906.
(35) Escolano, C.; Amat, M.; Bosch, J. Chem. Eur. J. 2006, 12, 8198-
8207.
(36) Amat, M.; Bosch, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.;
Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074-
3084.
(37) Amat, M.; Perez, M.; Minaglia, A. T.; Casamitjana, N.; Bosch, J.
Org. Lett. 2005, 7, 3653-3656.
(38) Amat, M.; Escolano, C.; Llor, N.; Lozano, O.; Gomez-Esque, A.;
Griera, R.; Bosch, J. ARKIVOC 2005, 115-123.
(39) Amat, M.; Perez, M.; Llor, N.; Escolano, C.; Luque, F. J.; Molins,
E.; Bosch, J. J. Org. Chem. 2004, 69, 8681-8693.
(40) Amat, M.; Huguet, M.; Llor, N.; Bassas, O.; Gomez, A. M.; Bosch,
J.; Badia, J.; Baldoma, L.; Aguilar, J. Tetrahedron Lett. 2004, 45, 5355-
5358.
(41) Amat, M.; Escolano, C.; Lozano, O.; Llor, N.; Bosch, J. Org. Lett.
2003, 5, 3139-3142.
(42) Casamitjana, N.; Amat, M.; Llor, N.; Carreras, M.; Pujol, X.;
Montserrat Fernandez, M.; Lopez, V.; Molins, E.; Miravitlles, C.; Bosch,
J. Tetrahedron: Asymmetry 2003, 14, 2033-2039.
(43) Bennasar, M. L.; Zulaica, E.; Alonso, Y.; Bosch, J. Tetrahedron:
Asymmetry 2003, 14, 469-479.
(44) Amat, M.; Llor, N.; Hidalgo, J.; Escolano, C.; Bosch, J. J. Org.
Chem. 2003, 68, 1919-1928.
(45) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel,
J. J. Am. Chem. Soc. 2001, 123, 11829-11830.
(46) Laschat, S.; Dickner, T. Synthesis 2000, 1781-1813.
J. Org. Chem, Vol. 73, No. 3, 2008 883