L. D. S. Yadav et al. / Tetrahedron Letters 49 (2008) 687–690
689
13. Remers, W. A. In The Chemistry of Antitumor Antibiotics; Wiley-
Interscience, 1979; Vol. 1, p 242.
14. Katoh, T.; Itoh, E.; Yoshino, T.; Terashima, S. Tetrahedron 1997, 53,
10229–10238.
15. Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–258.
16. Tanner, M. E.; Miao, S. Tetrahedron Lett. 1994, 35, 4073–4076.
17. Gerhart, F.; Higgins, W.; Tardif, C.; Ducep, J. B. J. Med. Chem.
1990, 33, 2157–2162.
18. Skibo, E. B.; Islam, I.; Heileman, M. J.; Schulz, W. G. J. Med. Chem.
1994, 37, 78–92.
O
O
O
X
R
NaH
(EtO)2PNHAr
(EtO)2PNAr
2
R'
6
1
O
R
Y
R'
R
O
O
O
P
EtO
Y
EtO
P
N
Ar
N
Ar
R'
EtO
(Y = H, NCS,
PhS)
EtO
7
19. Muller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52, 1543–
¨
3
1548.
O
P
20. Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994,
116, 2742–2753.
21. Atkinson, R. S. Tetrahedron 1999, 55, 1519–1559.
22. Hansen, K. B.; Finney, N. S.; Jacobsen, E. N. Angew. Chem., Int. Ed.
1995, 34, 676–678.
O
P
O
R
Y
R'
EtO
EtO
O
EtO
EtO
R
Y
R'
N
Ar
N
Ar
23. Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans.
1 1999, 2293–2297.
24. Pellicciari, R.; Amori, L.; Kuznetsova, N.; Zlotsky, S.; Gioiello, A.
Tetrahedron Lett. 2007, 48, 4911–4914.
R
R'
R
R'
Y
O
N
Ar
N
Ar
or
O-P(OEt)2
25. Kemp, J. E. G. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 467.
26. Padwa, A.; Murphree, S. S.. In Progress in Heterocyclic Chemistry;
Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon Elsevier Science:
Oxford, 2000; Vol. 12, Chapter 4.1, p 57.
4
5
Scheme 2. Tentative mechanism for the nucleophile-induced cyclization of
phosphoramidates 3 to aziridines 4 and 5.
´
27. (a) De Kimpe, N.; Verhe, R.; De Buyck, L.; Schamp, N. Synth.
attack of a nucleophile (NCSÀ or PhSÀ) on the carbonyl
carbon of 3 followed by intramolecular attack of the alkox-
ide ion on the phosphorus atom (Scheme 2).
´
Commun. 1975, 5, 269–274; (b) De Kimpe, N.; Verhe, R.; De Buyck,
L.; Schamp, N. Recl. Trav. Chim. Pays-Bas 1977, 96, 242–246; (c) De
Kimpe, N.; Schamp, N.; Verhe, R. Synth. Commun. 1975, 5, 403–408;
(d) De Kimpe, N.; Moens, L. Tetrahedron 1990, 46, 2965–2974; (e) De
´
In summary, we have developed a general and efficient
method for the synthesis of substituted and functionalized
aziridines by nucleophile-induced cyclization of readily
available a-halo ketone-derived phosphoramidates in a
one-pot procedure, which may find application in organic
synthesis.
´
Kimpe, N.; Moens, L.; Verhe, R.; De Buyck, L.; Schamp, N. J. Chem.
Soc., Chem. Commun. 1982, 19–20; (f) De Kimpe, N.; Sulmon, P.;
Verhe´, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1983, 48, 4320–
4326; (g) De Kimpe, N.; Verhe, R.; De Buyck, L.; Schamp, N. J. Org.
´
Chem. 1980, 45, 5319–5325.
28. Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693–
1715.
29. Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107,
2080–2135.
Acknowledgement
30. (a) Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron
Lett. 2007, 48, 4899–4902; (b) Yadav, L. D. S.; Rai, V. K. Synlett
2007, 1227–1230; (c) Yadav, L. D. S.; Rai, V. K. Tetrahedron Lett.
2006, 47, 395–397; (d) Yadav, L. D. S.; Yadav, S.; Rai, V. K. Green
Chem. 2006, 8, 455–458; (e) Yadav, L. D. S.; Yadav, S.; Rai, V. K.
Tetrahedron 2005, 61, 10013–10017.
We sincerely thank SAIF, Punjab University, Chandi-
garh, for providing microanalyses and spectra.
References and notes
31. General procedure for the synthesis of diethyl N-aryl-N-(2-
oxoalkyl)phosphoramidates 3: To a solution of diethyl N-arylphospho-
ramidate 1 (5 mmol) in dry benzene (5 mL) was added dropwise a
solution of sodium hydride (120 mg, 5 mmol) in dry benzene (10 mL)
with stirring at rt. After the addition was complete and the evolution
of hydrogen gas (effervescence) had ceased, the reaction mixture was
stirred at 60 °C for 30 min and then cooled to rt. Next, a solution a-
halo ketone 2 (5 mmol) in dry benzene (5 mL) was added and the
reaction mixture was stirred at 60 °C for 3 h. The solvent was
evaporated under reduced pressure, the residue washed with water
and crystallized from n-hexane to afford an analytically pure sample
of 3. Physical data of representative compounds: Compound 3a:
White crystals, Yield 89%, mp 161–163 °C. IR (KBr) mmax 3046, 2951,
1. Gabriel, S. Chem. Ber. 1888, 21, 1049–1057.
2. Tanner, D. Angew. Chem., Int. Ed 1994, 33, 599–619.
3. Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.;
Wiley-VCH: Weinheim, Germany, 2006.
4. Hu, X. E. Tetrahedron 2004, 60, 2701–2743.
5. Stamm, H. J. Prakt. Chem. Chem. Ztg. 1999, 341, 319–331.
6. Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–258.
7. Graham, M. A.; Wadsworth, A. H.; Thornton-Pett, M.; Rayner, C.
M. Chem. Commun. 2001, 966–967.
8. (a) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39,
194–206; (b) Dalili, S.; Caiazzo, A.; Yudin, A. K. J. Organomet.
Chem. 2004, 689, 3604–3611; (c) Watson, I. D. G.; Yudin, A. K. J.
Org. Chem. 2003, 68, 5160–5167; (d) Caiazzo, A.; Dalili, S.; Yudin, A.
K. Synlett 2003, 2198–2202; (e) Caiazzo, A.; Dalili, S.; Yudin, A. K.
Org. Lett. 2002, 4, 2597–2600.
9. Hodgkinson, T. J.; Shipman, M. Tetrahedron 2001, 57, 4467–4488.
10. Coleman, R. S.; Kong, J. S.; Richardson, T. E. J. Am. Chem. Soc.
1999, 121, 9088–9095.
11. Coleman, R. S.; Li, J.; Navarro, A. Angew. Chem., Int. Ed 2001, 40,
1736–1739.
1745, 1599, 1508, 1463, 1383, 758, 704 cmÀ1 1H NMR (400 MHz;
.
CDCl3/TMS) d: 1.19 (t, 6H, J = 7.4 Hz, 2 Â Me), 4.12 (q, 4H,
J = 7.4 Hz, 2 Â OCH2), 4.57 (s, 2H,CH2), 7.13–7.92 (m, 10Harom).
13C NMR (100 MHz; CDCl3/TMS) d: 15.3, 52.7, 61.2, 125.9, 126.7,
128.5, 130.7, 131.9, 132.8, 135.7, 138.3, 193.7. EIMS (m/z): 347 (M+).
Anal. Calcd for C18H22NO4P: C, 62.24; H, 6.38; N, 4.03. Found: C,
62.58; H, 6.27; N, 4.22. Compound 3g: White crystals, Yield 85%, mp
143–145 °C. IR (KBr) mmax 3042, 2949, 1748, 1603, 1511, 1460, 1378,
1035, 761, 706 cmÀ1 1H NMR (400 MHz; CDCl3/TMS) d: 1.21 (t,
.
12. Kasai, M.; Kono, M. Synlett 1992, 778–790.