G. F. Busscher et al. / Tetrahedron Letters 45 (2004) 3629–3632
3631
Hendrix, M.; Hung, S.-C.; Wong, C.-H. J. Am. Chem. Soc.
1999, 121, 6527–6541; (b) Sucheck, S. J.; Wong, A. L.;
Koeller, K. M.; Boehr, D. D.; Draker, K.; Sears, P.;
Wright, G. D.; Wong, C.-H. J. Am. Chem. Soc. 2000, 122,
5230–5231; (c) Luedtke, N. W.; Baker, T. J.; Goodman,
M.; Tor, Y. J. Am. Chem. Soc. 2000, 122, 12035–12036; (d)
Rosenbohm, C.; Berghe, D. V.; Vlietinck, A.; Wengel, J.
Tetrahedron 2001, 57, 6277–6287; (e) Tok, J. B.-H.; Fenker,
J. Bioorg. Med. Chem. Lett. 2001, 11, 2987–2991; (f)
Charles, I.; Xue, L.; Arya, D. P. Bioorg. Med. Chem. Lett.
2002, 12, 1259–1262; (g) Vourloumis, D.; Takahashi, M.;
Winters, G. C.; Simonsen, K. B.; Ayida, B. K.; Barluenga,
S.; Qamar, S.; Shandrick, S.; Zhao, Q.; Hermann, T.
Bioorg. Med. Chem. Lett. 2002, 12, 3367–3372; (h) Ryu, D.
H.; Tan, C. H.; Rando, R. R. Bioorg. Med. Chem. Lett.
2003, 13, 901–903; (i) Russell, R. J. M.; Murray, J. B.;
Lentzen, G.; Haddad, J.; Mobashery, S. J. Am. Chem. Soc.
2003, 125, 3410–3411; (j) Hanessian, S.; Tremblay, M.;
Swayze, E. E. Tetrahedron 2003, 59, 983–993; (k) Seeber-
ger, P. H.; Baumann, M.; Zhang, G.; Kanemitsu, T.;
Swayze, E. E.; Hofstadler, S. A.; Griffey, R. H. Synlett
2003, 9, 1323–1326.
was characterised by low stereoselectivity revealing a 1:1
mixture of syn- and anti-diastereomers 6a and 6b, which
did not improve upon varying the reaction conditions
(temperature, solvents, additives). A crucial role of the
amino protection was again suspected and therefore it
was decided to remove the p-methoxybenzyl group of 4
(fi7) with CAN prior to Grignard addition.14 Gratify-
ingly, addition of vinylmagnesium bromide after thiazole
unmasking (7 fi 8) now led to a much improved syn/anti
ratio of 4:1 of compounds 9a and 9b (Scheme 2).15 After
silica gel separation of the diastereomers, ring-closing
metathesis proceeded smoothly and the free hydroxyl of
the cyclic product 1016 was protected with a TBDMS
group to afford 11 in 82% yield (two steps). Despite the
presence of the bulky silyl group, however, epoxidation
of compound 11 with several reagents, such as m-CPBA,
oxone and in situ formed dioxirane17 led in all cases to
inseparable mixtures of diastereomers varying from 1:1
to 3:1 (not depicted). Matters became more complicated
when we tried to open the diastereomeric epoxides with
sodium azide, leading to the formation of four isomeric
azido alcohols. Therefore, it was decided to prepare
cyclic sulfate 13. The reactivity of cyclic sulfates and
epoxides towards nucleophiles is similar in nature but
differs in selectivity.18 Another advantage is that the ring
opening of five-membered cyclic sulfates proceeds much
faster than with epoxides probably due to the better
leaving group ability.19 Thus, the double bond of 11 was
dihydroxylated20 (11 fi 12),15 which occurred with
exclusive facial selectivity, followed by reaction with
thionyl chloride and oxidation to form the cyclic sulfate
13 in 80% yield.21 Much to our satisfaction, opening of
the cyclic sulfate with lithium azide proceeded com-
pletely regioselectively to give, after subsequent sulfate
hydrolysis, the protected 2-deoxystreptamine 14 in
enantiomerically pure form.15 The latter compound,
after glycosylation of the free hydroxyl, is ideally suited
for the preparation of either 4,5- or 4,6-linked amino-
glycoside analogues after subsequent desilylation or
debenzylation, respectively.
4. Kaul, M.; Barbieri, C. M.; Kerrigan, J. E.; Pilch, D. S. J.
Mol. Biol. 2003, 326, 1373–1387.
5. 2-Deoxystreptamine syntheses: (a) Nakajima, M.; Haseg-
awa, A.; Kurihara, N. Justus Liebigs Ann. Chem. 1965,
689, 235–242; (b) Suami, T.; Lichtenthaler, F. W.; Ogawa,
S.; Nakashima, Y.; Sano, H. Bull. Chem. Soc. Jpn. 1967,
40, 1014–1017; (c) Dijkstra, D. Recl. Trav. Chim. Pays-
Bas. 1968, 87, 161–180; (d) Ogawa, S.; Ueda, T.; Funaki,
Y.; Hongo, Y.; Kasuga, A.; Suami, T. J. Org. Chem. 1977,
€
42, 3083–3088; (e) Kuhlmeyer, R.; Keller, R.; Schwesinger,
R.; Netscher, T.; Fritz, H.; Prinzbach, H. Chem. Ber. 1984,
117, 1765–1800.
6. Baer, H. H.; Arai, I.; Radatus, B.; Rodwell, J.; Chinh, N.
Can. J. Chem. 1987, 65, 1443–1451.
7. da Silva, E. T.; Le Hyaric, M.; Machado, A. S.; Almeida,
M. V. Tetrahedron Lett. 1998, 39, 6659–6662.
8. Canas-Rodriguez, A.; Ruiz-Poveda, S. G. Carbohydr. Res.
1977, 59, 240–243.
9. Tona, R.; Bertolini, R.; Hunziker, J. Org. Lett. 2000, 2,
1693–1696.
10. Swayze, E.; Griffey, R.; Ding, Y.; Mohan, V. Patent
Application WO 01/39726A2, 2001.
11. Wolf, L.; Sonke, T.; Tjen, K. C. M. F.; Kaptein, B.;
Broxterman, Q. B.; Schoemaker, H. E.; Rutjes, F. P. J. T.
Adv. Synth. Catal. 2001, 343, 662–674.
In conclusion, we believe that the synthesis described
above is a versatile route towards orthogonally pro-
tected 2-deoxystreptamine in enantiomerically pure
form in 14 steps and an overall yield of 6.1%. The
aminocyclitol building block obtained is suitable for
incorporation into new aminoglycoside entities. Work
along this line is currently in progress in our laboratory.
12. Provided by Chiralix, Nijmegen, The Netherlands.
13. Configuration of the syn-amino alcohol 2b was assigned
1
by H NMR analysis of the corresponding oxazolidinone
3. See, for example: Dondoni, A.; Perrone, D. Synthesis
1993, 1162–1176.
14. Reaction was performed up to 5 mmol scale. Buffering of
the CAN solution with NaHCO3 was required to prevent a
drop in yield.
20
Acknowledgement
15. Compound identification: 9a: ½aꢀ +27.3 (c 1.89, CH2Cl2).
D
1H NMR (CDCl3, 400 MHz, ppm): d 7.48–7.25 (m, 5H,
arom), 6.19–6.40 (m, 1H, @CH–), 5.82–5.62 (m, 1H,
@CH–), 5.72 (d, 1H, J ¼ 10:5 Hz, @CH2), 5.12 (d, 1H,
J ¼ 17:3 Hz, @CH2), 5.11–5.02 (m, 2H, @CH2), 4.77 (d,
1H, J ¼ 11:3 Hz, CH2), 4.66 (d, 1H, J ¼ 11:0 Hz, CH2),
4.80 (br s, 1H, CH), 4.23–4.15 (m, 1H, CH), 4.09–3.80 (m,
1H, CH), 3.45 (d, 1H, J ¼ 6:92 Hz, NH), 2.55 (d, 1H,
J ¼ 4:68 Hz, OH), 2.31 (br t, 2H, J ¼ 7:18 Hz, CH2), 1.41
(s, 9H, t-Bu). 13C NMR (CDCl3, 75 MHz, ppm): 159.6,
139.6, 135.0, 128.9, 128.8, 118.1, 118.0, 79.9, 75.6, 73.7,
51.0, 38.5, 29.1. HRMS (CI) m=z calcd for C20H30O4N
(M+H)þ: 348.2174, found: 348.2167. IR mmax film: cmꢁ1
2975, 1706, 1502, 1171.
This research was financially supported by the Nether-
lands Organisation for Scientific Research (NWO).
References and notes
1. Beaucaire, G. J. Chemother. 1995, 7(Suppl. 2), 111–123.
2. Zembower, T. R.; Noskin, G. A.; Postelnick, M. J.;
Nguyen, C.; Peterson, L. R. Int. J. Antimicrob. Agent
1998, 2, 95–105.
3. Some representative papers: (a) Greenberg, W. A.; Priest-
ley, E. S.; Sears, P. S.; Alper, P. B.; Rosenbohm, C.;