composition.5 Dipeptides such as L-Phe-L-Phe can self-
assemble into vesicles, although the kind of interaction and
the aggregation mode leading to vesicle formation are
unclear.6 We report here that a molecule as small as
zwitterion 3, which does not have a classical amphiphilic
structure with well-separated polar and unpolar segments,
self-assembles into soft vesicles in DMSO.
pairing occurs as confirmed by the concentration-dependent
shift changes in an NMR dilution study in DMSO-d6 (Figure
1).10 The rather small complexation induced shift change of
The synthesis of zwitterion 3 is shown in Scheme 1:
Scheme 1. Synthesis of Zwitterion 3
L-alanine methyl ester hydrochloride 2 was coupled with the
Boc-protected guanidinocarbonyl pyrrole carboxylic acid 17
using PyBOP in DMF as the coupling reagent (yield 63%).
The Boc group was removed with TFA, and afterward, the
methyl ester was cleaved with LiOH to yield zwitterion 3
(yield: 80%).
Zwitterion 3 is self-complementary as the cationic guani-
diniocarbonyl pyrrole8 is an efficient binding site for car-
boxylates.9 Intramolecular ion pairing of 3 is not possible
for geometric reasons; therefore, an intermolecular ion
Figure 1. Self-association of zwitterion 3 (the red arrow indicates
the NOE contact); parts of the H NMR spectrum showing the
concentration dependent shift changes in DMSO-d6 (1-100 mM
from bottom to top).
1
(4) Recent examples for vesicle formation from non-polymers: (a) Xie,
D.; Jiang, M.; Zhang, G.; Chen, D. Chem.-Eur. J. 2007, 13, 3346. (b)
Dong, D.; Baigl, D.; Cui, Y.; Sinay, P.; Sollogoub, M.; Zhang, Y.
Tetrahedron 2007, 63, 2973. (c) Schmuck, C.; Rehm, T.; Klein, K.; Gro¨hn,
F. Angew. Chem., Int. Ed. 2007, 46, 1693. (d) Seo, H. S.; Chang, J. Y.;
Tew, G. N. Angew. Chem., Int. Ed. 2006, 118, 7688; (e) Balakrishnan, K.;
Datar, A.; Zhang, W.; Yang, X.; Naddo, T.; Huang, J.; Zuo, J.; Yen, M.;
Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2006, 128, 6576. (f) Hoeben, F.
J. M.; Shklyarevskiy, I. O.; Pouderoijen, M. J.; Engelkamp, H.; Schenning,
A. P. H. J.; Christianen, P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem.,
Int. Ed. 2006, 45, 1232. (g) Holowka, E. P.; Pochan, D. J.; Deming, T. J.
J. Am. Chem. Soc. 2005, 127, 12423. (h) Lee, H.-K.; Park, K. M.; Jeon, Y.
J.; Kom, D.; Oh, D. Y.; Kim, H. S.; Park, C. K.; Kim, K. J. Am. Chem.
Soc. 2005, 127, 5006. (i) Lee, M.; Lee, S.-J.; Jiang, L.-H. J. Am. Chem.
Soc. 2004, 126, 12724. (j) Zhou, Y.; Yan, D. Angew. Chem., Int. Ed. 2004,
43, 4896.
the guanidinio amide NH proton a of ∆δ ) 0.47 is indicative
for the formation of a bidentate carboxylate-guanidinium ion
pair as shown in Figure 1.11 An NOE-contact between amide
NH proton b and pyrrole CH proton c confirms that 3 is
present in an extended conformation as shown with the amide
NH of the alanine pointing to the back.
Unexpectedly, all NMR samples of higher concentration
(c > 10 mM) showed a strong Tyndall effect, indicating the
formation of even larger aggregates than just ion-paired
dimers or smaller oligomers. Therefore, atomic force mi-
croscopy (AFM), dynamic light scattering (DLS), and
transmission electron microscopy (TEM) were performed to
further investigate the self-assembly of 3. For AFM analysis,
a 5 mM solution of 3 in DMSO was spin coated onto silica
wafers and analyzed in the tapping mode. Figure 2 shows
spherical particles with a mean diameter of ca. 25 nm
(measured at half-height of the particles) and a height of ca.
4 nm, about six times smaller than the average diameter.
The mean diameter of 25 nm of the particles is significantly
larger than the molecular dimension of zwitterion 3 (ca. 1.4
nm estimated from molecular modeling; see Supporting
Information). Therefore, it is very unlikely that the particles
(5) Fuhrhop, J.-H.; Wang, T. Chem. ReV. 2004, 104, 2901.
(6) Recent examples for the self-assembly of dipeptides: (a) Reches,
M.; Gazit, E. Science 2003, 300, 625. (b) Adler-Abramovich, L.; Reches,
M.; Sedman, V.; Allen, S.; Tendler, S.; Gazit, E. Langmuir 2006, 22, 1313.
(c) Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Angew. Chem.,
Int. Ed. 2007, 46, 2431. (d) Song, Y.; Challa, S.; Medforth, C.; Qui, Y.;
Watt, R.; Pena, D.; Miller, J.; van Swol, F.; Shelnutt, J. Chem. Commun.
2004, 1044. (e) Reches, M.; Gazit, E. Nano Lett. 2004, 4, 581. (f) Soldatov,
D.; Moudrakovski, I.; Grachev, E.; Ripmeester, J. J. Am. Chem. Soc. 2006,
128, 6737. (g) Soldatov, D.; Moudrakovski, I.; Ripmeester, J. Angew. Chem.,
Int. Ed. 2004, 43, 6308.
(7) Schmuck, C.; Bickert, V.; Merschky, M.; Geiger, L.; Rupprecht, D.;
Dudaczek, J.; Wich, P.; Rehm, T.; Machon, U. Eur. J. Org. Chem. 2008,
324.
(8) Schmuck, C. Coord. Chem. ReV. 2006, 250, 3053.
(9) For recent reviews on oxoanion binding by guanidinium cations
see: (a) Schug, K. A.; Lindner, W. Chem. ReV. 2005, 105, 67. (b) Houk,
R. J. T.; Tobey, S. L.; Anslyn, E. V. Top. Curr. Chem. 2005, 255, 199. (c)
Blondeau, P.; Segura, M.; Perez-Fernandez, R.; de Mendoza, J. Chem. Soc.
ReV. 2007, 36, 198.
(10) Connors, K. Binding Constants; Wiley & SonsL Chichester, 1987.
(11) Schmuck, C. Tetrahedron 2001, 57, 3063.
1470
Org. Lett., Vol. 10, No. 7, 2008