2660
Y. Y. Song et al. / Tetrahedron Letters 54 (2013) 2658–2660
9087–9092; (b) Hu, H.; Harrison, T. J.; Wilson, P. D. J. Org. Chem. 2004, 69, 3782–
3786; (c) Edafiogho, I. O.; Hinko, C. N.; Chang, H.; Moore, J. A.; Mulzac, D.;
Nicholson, J. M.; Scott, K. R. J. Med. Chem. 1992, 35, 2798–2805; (d) Marmor, R.
S. J. Org. Chem. 1972, 37, 2901–2904.
by silica gel column chromatography in 50% and 40% isolated yield,
respectively. Hydrolysis of the ester moiety in aqueous KOH solu-
tion produced the amorfrutin A (1) in 93% yield, whose spectral
data15 were in good agreement with the literature reported.3,5
7. Kiyotsuka, Y.; Katayama, Y.; Acharya, H. P.; Hyodo, T.; Kobayashi, Y. J. Org.
Chem. 2009, 74, 1939–1951.
8. Gramatica, P.; Gianotti, M.; Speranza, G.; Manitto, P. Heterocycles 1986, 24,
743–750.
9. Kosower, E. M.; Wu, G. S. J. Org. Chem. 1963, 28, 633–638.
10. Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123,
10784–10785.
11. Sharma, A.; Pandey, J.; Tripathi, R. Tetrahedron Lett. 2009, 50, 1812–1816.
12. Görth, F. C.; Rucker, M.; Eckhardt, M.; Brückner, R. Eur. J. Org. Chem. 2000, 2000,
2605–2611.
Conclusion
In conclusion, we developed a concise and efficient route for the
synthesis of biologically interesting natural amorfrutin A (1) from
commercially available phenylpropyl aldehyde. The key steps in
the synthetic strategy involve the Michael addition and intramo-
lecular Claisen condensation in a one pot reaction and oxidative
aromatization. The overall yield was about 27.2%. This method
would be useful for the synthesis of amorfrutin A and its deriva-
tives for further pharmacodynamic mechanism of action and struc-
ture–activity relationships studies.
13. Mal, D.; Pahari, P.; De, S. R. Tetrahedron 2007, 63, 11781–11792.
14. Yoshida, M.; Nakatani, K.; Shishido, K. Tetrahedron 2009, 65, 5702–5708.
15. Compound 2: pale yellow oil, 1H NMR (400 MHz, CDCl3) d: 11.86 (s, 1H), 7.32–
7.27 (m, 2H), 7.22–7.17 (m, 3H), 6.36 (d, J = 2.8 Hz, 1H), 6.25 (d, J = 2.8 Hz, 1H),
4.44 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.21 (t, J = 8.0 Hz, 2H), 2.87 (t, J = 8.0 Hz,
2H), 1.39 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) d: 171.4, 165.6, 163.9,
146.6, 141.7, 128.3, 128.2, 125.9, 110.8, 104.7, 99.1, 61.4, 55.3, 38.4, 38.0, 14.3.
Compound 4: colorless oil, 1H NMR (400 MHz, CDCl3) d: 7.31–7.26 (m, 2H),
7.22–7.17 (m, 3H), 7.00 (dt, J = 6.8 Hz, 16.0 Hz, 1H), 5.84 (d, J = 16.0 Hz, 1H),
4.18 (q, J = 6.8 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 2.55–2.52 (q, J = 7.6 Hz, 2H), 1.28
(t, J = 6.8 Hz, 3H).
Acknowledgments
Compound 8: white solid, mp 85.5–86.5 °C. 1H NMR (400 MHz, CDCl3) d: 11.81
(s, 1H), 7.32–7.27 (m, 2H), 7.23–7.18 (m, 3H), 6.31 (d, J = 2.4 Hz, 1H), 6.18 (d,
J = 2.4 Hz, 1H), 5.22 (brs, 1H), 4.43 (q, J = 7.2 Hz, 2H), 3.20 (t, J = 7.6 Hz, 2H),
2.87 (t, J = 7.6 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H).
This work was financially supported by the Chinese National
Natural Science Foundation (20672077, 20872099), the Research
Fund for the Doctoral Program of Higher Education (2011018
1110079) and the National Science and Technology Major Project
on ‘Key New Drug Creation and Manufacturing Program’
(2013ZX09301304-002).
Compound 9: colorless oil, 1H NMR (400 MHz, CDCl3) d: 7.31–7.27 (m, 2H),
7.22–7.18 (m, 3H), 6.34 (d, J = 2.0 Hz, 1H), 6.25 (d, J = 2.0 Hz, 1H), 5.46–5.42 (m,
1H), 4.52 (d, J = 6.4 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 3.75 (s, 3H), 2.91–2.85 (m,
4H), 1.77 (s, 3H), 1.72 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3)
d: 168.2, 161.0, 157.3, 141.5, 137.3, 128.3, 128.2, 125.9, 119.6, 116.9, 105.8,
97.7, 65.6, 60.8, 55.2, 37.6, 36.0, 25.6, 18.2, 14.2; HR-ESI-MS: calcd. for
23H28O4 [M+K]+: 407.1625, found: 407.1624.
Supplementary data
C
Compound 10: colorless oil, 1H NMR (400 MHz, CDCl3) d: 11.83 (s, 1H), 7.31–
7.27 (m, 2H), 7.22–7.17 (m, 3H), 6.16 (s, 1H), 5.20 (t, J = 7.2 Hz, 1H), 4.44 (q,
J = 7.2 Hz, 2H), 3.77 (s, 3H), 3.34 (d, J = 7.2 Hz, 2H), 3.22 (t, J = 7.6 Hz, 2H), 2.88
(t, J = 7.6 Hz, 2H), 1.78 (s, 3H), 1.70 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H); 13C NMR
(100 MHz, CDCl3) d: 171.7, 161.8, 161.0, 143.9, 141.8, 131.6, 128.3, 128.2,
125.9, 122.4, 115.1, 105.9, 105.2, 61.3, 55.4, 38.7, 38.1, 25.8, 21.9, 17.8, 14.3;
HR-ESI-MS: calcd. for C23H28O4 [M+K]+: 407.1625, found: 407.1628.
Supplementary data associated with this article can be found, in
References and notes
Compound 11: colorless oil, 1H NMR (400 MHz, CDCl3) d: 7.31–7.28 (m, 2H),
7.22–7.17 (m, 3H), 6.39 (s, 1H), 5.50 (t, J = 6.8 Hz, 1H), 5.15 (t, J = 6.4 Hz, 1H),
4.38 (d, J = 6.4 Hz, 2H), 4.36 (q, J = 6.8 Hz, 2H), 3.78 (s, 3H), 3.33 (d, J = 6.4 Hz,
2H), 2.91–2.86 (m, 4H), 1.77 (s, 3H), 1.74 (s, 3H), 1.67 (s, 6H), 1.37 (t, J = 7.2 Hz,
3H); 13C NMR (100 MHz, CDCl3): d: 168.7, 159.1, 155.2, 141.6, 138.5, 137.3,
131.4, 128.4, 128.3, 125.9, 122.9, 121.8, 121.5, 120.5, 107.5, 72.3, 61.1, 55.6,
37.8, 36.1, 25.8, 25.7, 23.0, 18.0, 17.9, 14.3; HR-ESI-MS: calcd. for C28H36O4
[M+K]+: 475.2251, found: 475.2257.
1. Mitscher, L. A.; Park, Y. H.; Alshamma, A.; Hudson, P. B.; Haas, T. Phytochemistry
1981, 20, 781–785.
2. Dat, N. T.; Lee, J. H.; Lee, K.; Hong, Y. S.; Kim, Y. H.; Lee, J. J. J. Nat. Prod. 2008, 71,
1696–1700.
3. Weidner, C.; de Groot, J. C.; Prasad, A.; Freiwald, A.; Quedenau, C.; Kliem, M.;
Witzke, A.; Kodelja, V.; Han, C. T.; Giegold, S. Proc. Natl. Acad. Sci. U.S.A. 2012,
109, 7257–7262.
4. Chanis, E.A.V. Ph.D. Dissertation, University of Kansas, 1992.
5. Laclef, S.; Anderson, K.; White, A. J. P.; Barrett, A. G. M. Tetrahedron Lett. 2012,
53, 225–227.
Compound 1: off-white solid: mp 136–138 °C. 1H NMR (400 MHz, acetone-d6)
d: 7.30–7.27 (m, 4H), 7.20–7.18 (m, 1H), 6.50 (s, 1H), 5.19 (t, J = 1.2 Hz, 1H),
3.85 (s, 3H), 3.31–3.27 (m, 4H), 2.93 (t, J = 8.0 Hz, 2H), 1.76 (s, 3H), 1.63 (s, 3H);
13C NMR (100 MHz, acetone-d6): d: 174.4, 163.4, 162.1, 145.9, 143.1, 131.2,
129.2, 129.0, 126.5, 123.5, 115.2, 106.7, 105.4, 55.9, 39.9, 39.1, 25.8, 22.5, 17.8.
HR-ESI-MS: calcd. for C21H24O4 [M+Na]+: 363.1572, found: 363.1573.
6. For based-catalyzed condensation of b-alkylacrylate ester and acetoacetate
through Michael addition–Claisen condensation reaction, see: (a) Kobayashi, S.;
Ando, A.; Kuroda, H.; Ejima, S.; Masuyama, A.; Ryu, I. Tetrahedron 2011, 67,