Inorganic Chemistry
Article
(10) Kellett, R. M.; Spiro, T. G. Cobalt(I) Porphyrin Catalysis of
Hydrogen Production from Water. Inorg. Chem. 1985, 24, 2373−
2377.
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(11) Maher, A. G.; Passard, G.; Dogutan, D. K.; Halbach, R. L.;
Anderson, B. L.; Gagliardi, C. J.; Taniguchi, M.; Lindsey, J. S.; Nocera,
D. G. Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt
Chlorin. ACS Catal. 2017, 7, 3597−3606.
(12) Kleingardner, J. G.; Kandemir, B.; Bren, K. L. Hydrogen
Evolution from Neutral Water under Aerobic Conditions Catalyzed
by Cobalt Microperoxidase-11. J. Am. Chem. Soc. 2014, 136, 4−7.
(13) Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen
Evolution Catalyzed by Cobalt Diimine−Dioxime Complexes. Acc.
Chem. Res. 2015, 48, 1286−1295.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
(14) Chapovetsky, A.; Do, T. H.; Haiges, R.; Takase, M. K.;
Marinescu, S. C. Proton-Assisted Reduction of CO2 by Cobalt
Aminopyridine Macrocycles. J. Am. Chem. Soc. 2016, 138, 5765−
5768.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Grants-in-Aid for Scientific
Research provided by JSPS KAKENHI Grant Numbers
JP15H05804, JP16K14036, JP16H06045, JP16H00837,
JP16H00758, and JP18K19099. We appreciate support from
JST PRESTO (JPMJPR15S2) and SICORP. We thank Dr. Y.
Nishii and Prof. M. Miura (Osaka University) for the crystal
structural analysis.
(15) Fisher, B.; Eisenberg, R. Electrocatalytic Reduction of Carbon
Dioxide by Using Macrocycles of Nickel and Cobalt. J. Am. Chem. Soc.
1980, 102, 7361−7363.
́
(16) Roy, S.; Sharma, B.; Pecaut, J.; Simon, P.; Fontecave, M.; Tran,
P. D.; Derat, E.; Artero, V. Molecular Cobalt Complexes with Pendant
Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to
Formic Acid. J. Am. Chem. Soc. 2017, 139, 3685−3696.
́
(17) Losada, J.; Delpeso, I.; Beyer, L.; Hartung, J.; Fernandez, V.;
̈
Mobius, M. Electrocatalytic reduction of O2 and CO2 with
REFERENCES
electropolymerized films of polypyrrole cobalt(II) Shiff-base com-
plexes. J. Electroanal. Chem. 1995, 398, 89−93.
■
̈
(1) Gruber, K.; Puffer, B.; Krautler, B. Vitamin B12-derivatives
enzyme cofactors and ligands of proteins and nucleic acids. Chem. Soc.
Rev. 2011, 40, 4346−4363.
(18) Sheng, H.; Frei, H. Direct Observation by Rapid-Scan FT-IR
Spectroscopy of Two-Electron-Reduced Intermediate of Tetraaza
Catalyst [CoIIN4H(MeCN)]2+ Converting CO2 to CO. J. Am. Chem.
Soc. 2016, 138, 9959−9967.
(2) Matthews, R. G. Cobalamin-Dependent Methyltransferases. Acc.
Chem. Res. 2001, 34, 681−689.
(3) Brown, K. L. Chemistry and Enzymology of Vitamin B12. Chem.
Rev. 2005, 105, 2075−2149.
(19) Cometto, C.; Chen, L.; Lo, P.-K.; Guo, Z.; Lau, K.-C.;
́
̀
Anxolabehere-Mallart, E.; Fave, C.; Lau, T.-C.; Robert, M. Highly
Selective Molecular Catalysts for the CO2-to-CO Electrochemical
Conversion at Very Low Overpotential. Contrasting Fe vs Co
Quaterpyridine Complexes upon Mechanistic Studies. ACS Catal.
2018, 8, 3411−3417.
(4) Drennan, C. L.; Huang, S.; Drummond, J. T.; Matthews, R. G.;
Lidwig, M. L. How a Protein Binds B12: A 3.0 Å X-ray Structure of
B12-Binding Domains of Methionine Synthase. Science 1994, 266,
1669−1674.
(5) Buckel, W.; Golding, B. T. Glutamate and 2-Methyleneglutarate
Mutase: From Microbial Curiosities to Paradigms for Coenzyme B12-
dependent Enzymes. Chem. Soc. Rev. 1996, 25, 329−337.
(6) Dolphin, D.; Harris, R. L. N.; Huppatz, J. L.; Johnson, A. W.;
Kay, I. T. 1,19-Disubstituted Tetradehydrocorrins. J. Chem. Soc. C
1966, 30−40.
(7) (a) Liu, C.-J.; Thompson, A.; Dolphin, D. Synthesis, structure
and properties of 1,19-disubstituted tetradehydrocorrin cobalt
complexes. J. Inorg. Biochem. 2001, 83, 133−138. (b) Murakami, Y.;
Aoyama, Y.; Tokunaga, K. Transition-Metal Complexes of Pyrrole
Pigments. 16. Cobalt Complexes of 1,19-Dimethyldehydrocorrins as
Vitamin B12 Models. J. Am. Chem. Soc. 1980, 102, 6736−6744.
(c) Murakami, Y.; Sakata, K.; Tanaka, Y.; Matsuo, T. Transition-metal
Complexes of Pyrrole Pigments. XII. Optical and Magnetic
Resonance Spectra of the Cobalt(II) and Nickel(II) Complexes of
1,19-Disubstituted Tetradehydrocorrins. Bull. Chem. Soc. Jpn. 1975,
48, 3622−3630. (d) Hush, N. S.; Woolsey, I. S. A Study of the
Reduced Species of Cobalt and Nickel Complexes Analogous to
Vitamin B12. J. Am. Chem. Soc. 1972, 94, 4107−4114.
(8) (a) Morita, Y.; Oohora, K.; Sawada, A.; Kamachi, T.; Yoshizawa,
K.; Hayashi, T. Redox Potentials of Cobalt Corrinoids with Axial
Ligands Correlate with Heterolytic Co−C Bond Dissociation
Energies. Inorg. Chem. 2017, 56, 1950−1955. (b) Morita, Y.;
Oohora, K.; Sawada, A.; Doitomi, K.; Ohbayashi, J.; Kamachi, T.;
Yoshizawa, K.; Hisaeda, Y.; Hayashi, T. Intraprotein transmethylation
via a CH3−Co(III) species in myoglobin reconstituted with a cobalt
corrinoid complex. Dalton Trans 2016, 45, 3277−3284.
(9) Thoi, V. S.; Sun, Y.; Long, J. R.; Chang, C. J. Complexes of
earth-abundant metals for catalytic electrochemical hydrogen
generation under aqueous conditions. Chem. Soc. Rev. 2013, 42,
2388−2400.
(20) Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.;
Hambright, P.; Fujita, E. Cobalt Porphyrin Catalyzed Reduction of
CO2. Radiation Chemical, Photochemical, and Electrochemical
Studies. J. Phys. Chem. A 1998, 102, 2870−2877.
(21) Hu, X.-M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.;
Daasbjerg, K. Enhanced Catalytic Activity of Cobalt Porphyrin in
CO2 Electroreduction upon Immobilization on Carbon Materials.
Angew. Chem., Int. Ed. 2017, 56, 6468−6472.
(22) Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.;
Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M.
T. M. Electrocatalytic reduction of carbon dioxide to carbon
monoxide and methane at an immobilized cobalt protoporphyrin.
Nat. Commun. 2015, 6, 8177−8184.
(23) Grodkowski, J.; Dhanasekaran, T.; Neta, P.; Hambright, P.;
Brunschwig, B. S.; Shinozaki, K.; Fujita, E. Reduction of Cobalt and
Iron Phthalocyanines and the Role of the Reduced Species in
Catalyzed Photoreduction of CO2. J. Phys. Chem. A 2000, 104,
11332−11339.
(24) Grodkowski, J.; Neta, P.; Fujita, E.; Mahammed, A.;
Simkhovich, L.; Gross, Z. Reduction of Cobalt and Iron Corroles
and Catalyzed Reduction of CO2. J. Phys. Chem. A 2002, 106, 4772−
4778.
(25) Grodkowski, J.; Neta, P. Cobalt Corrin Catalyzed Photo-
reduction of CO2. J. Phys. Chem. A 2000, 104, 1848−1853.
(26) Okabe, Y.; Lee, S. K.; Kondo, M.; Masaoka, S. Synthesis and
CO2 reduction activities of π-expanded/extended iron porphyrin
complexes. JBIC, J. Biol. Inorg. Chem. 2017, 22, 713−725.
́
(27) Costentin, C.; Drouet, S.; Robert, M.; Saveant, J.-M. A Local
Proton Source Enhances CO2 Electroreduction to CO by a Molecular
Fe Catalyst. Science 2012, 338, 90−94.
H
Inorg. Chem. XXXX, XXX, XXX−XXX