H. Senboku et al. / Tetrahedron Letters 51 (2010) 435–438
437
present selective
present
detosylation
R1
R2
H
Ts
R1
H
mono-detosylation
alkylation
with
1-X
alkylation
with
2-X
N
Ts
N
Ts
N
R
R
H
A
B
C
Scheme 2. New protocol for the synthesis of N,N-dialkylamine.
H
N
H
N
H
N
H
N
Pt
Mg
Ts
N
Ts
Ts
Ts
N
H
Ts
0.1 M Et4NBr - DMF
5 mA/cm2, 3 F/mol, 0 ºC
naphthalene (0.5 equiv.)
93% conversion
5
6
66%
(71% based on reacted 5)
Scheme 3. Selective detosylation of triamide 5.
2. (a) Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1988, 53, 2367; (b) Alonso, D. A.;
Andersson, P. G. J. Org. Chem. 1998, 63, 9455; (c) Jordis, U.; Sauter, F.; Siddiqi, S.
M.; Küenburg, B.; Bhattacharya, K. Synthesis 1990, 925; (d) Compagnone, R. S.;
Rapoport, H. J. Org. Chem. 1986, 51, 1713; (e) Kudav, D. P.; Samant, S. P.;
Hosangadi, B. D. Synth. Commun. 1987, 17, 1185; (f) Portoghese, P. S.; Mikhail,
A. A. J. Org. Chem. 1966, 31, 1059.
3. (a) Heathcock, C. H.; Smith, K. M.; Blumenkopf, T. A. J. Am. Chem. Soc. 1986, 108,
5022; (b) Schultz, A. G.; McCloskey, P. J.; Court, J. J. J. Am. Chem. Soc. 1987, 109,
6493; (c) Yamazaki, N.; Kibayashi, C. J. Am. Chem. Soc. 1989, 111, 1396; (d)
Dalko, P. I.; Burn, V.; Langlois, Y. Tetrahedron Lett. 1998, 39, 8979.
4. (a) Birkinshaw, T. N.; Holmes, A. B. Tetrahedron Lett. 1987, 28, 813; (b) Chavez,
F.; Sherry, A. D. J. Org. Chem. 1989, 54, 2990; (c) Forshee, P. B.; Sibert, J. W.
Synthesis 2006, 756.
5. (a) McIntosh, J. M.; Matassa, L. C. J. Org. Chem. 1988, 53, 4452; (b) Heathcock, C.
H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548; (c) Bergmeier, S.
C.; Seth, P. P. Tetrahedron Lett. 1999, 40, 6181; (d) Nagashima, H.; Ozaki, N.;
Washiyama, M.; Itoh, K. Tetrahedron Lett. 1985, 26, 657; (e) Henry, J. R.; Marcin,
L. R.; McIntosh, M. C.; Scola, P. M.; Harris, G. D., Jr.; Weinreb, S. M. Tetrahedron
Lett. 1989, 30, 5709; (f) Katoh, T.; Itoh, E.; Yoshino, T.; Terashima, S. Tetrahedron
Lett. 1996, 37, 3471; (g) Zhou, W.-S.; Xie, W.-G.; Liu, Z.-H.; Pan, X. F. Tetrahedron
Lett. 1995, 36, 1291; (h) Magnus, P.; Giles, M.; Bonnert, R.; Kim, C. S.; McQuire,
L.; Merritt, A.; Vicker, N. J. Am. Chem. Soc. 1992, 114, 4403; (i) Alonso, E.; Ramón,
D. J.; Yus, M. Tetrahedron 1997, 53, 14355; (j) Chowdhury, M. A.; Reissig, H.-U.
Synlett 2006, 2383.
6. (a) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373; (b)
Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.
7. Fukuyama, T.; Cheung, M.; Jow, C.-K.; Hidai, Y.; Kan, T. Tetrahedron Lett. 1997,
38, 5831.
8. (a) Wakimasu, M.; Kitada, C.; Fujino, M. Chem. Pharm. Bull. 1981, 29, 2592; (b)
Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 892.
9. Ramage, R.; Green, J. Tetrahedron Lett. 1987, 28, 2287.
10. (a) Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. J. Org. Chem. 1995, 60, 5969;
(b) Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. Tetrahedron 1995, 51,
12573; (c) Vedjs, E.; Lin, S.; Klapars, A.; Wang, J. J. Am. Chem. Soc. 1996, 118,
9796; (d) Park, J. K.; Guggisberg, A.; Hesse, M. Tetrahedron 1998, 54, 8035; (e)
Wuts, P. G. M.; Gu, R. L.; Northuis, J. M.; Thomas, C. L. Tetrahedron Lett. 1998, 39,
9155; (f) Wuts, P. G. M.; Gu, R. L.; Northuis, J. M. Lett. Org. Chem. 2004, 1, 372.
11. (a) Parsons, A. F.; Pettifer, R. M. Tetrahedron Lett. 1996, 37, 1667; (b) Knowles,
H. S.; Parsons, A. F.; Pettifer, R. M.; Rickling, S. Tetrahedron 2000, 56, 979.
12. (a) Vedejs, E.; Lin, S. J. Org. Chem. 1994, 59, 1602; (b) Hill, D. C.; Flugge, L. A.;
Petillo, P. A. J. Org. Chem. 1997, 62, 4864; (c) Knowles, H.; Parsons, A. F.; Pettifer,
R. M. Synlett 1997, 271; (d) Moussa, Z.; Romo, D. Synlett 2006, 3294; (e) Ankner,
T.; Hilmersson, G. Org. Lett. 2009, 11, 503.
(3m) was found to proceed efficiently under similar conditions to
give N-dodecyltosylamide (4m) in 95% yield (Table 2, entry 13).
It has been shown that mono-detosylation of N-alkyl-di-tosyla-
mides required harsh reaction conditions,28 whereas mono-
detosylation of N-aryl derivatives could take place under relatively
mild conditions.20b,29 The present method enables selective mono-
detosylation of N-alkyl-di-tosylamides under neutral and quite
mild conditions without a mercury electrode to afford N-alkylto-
sylamides in high yields. These accomplishments of detosylation
should enable the establishment of a new general protocol for
the synthesis of N,N-dialkylamines as shown in Scheme 2. Thus,
alkylation of a commercial ditosylamide A gives N-alkyl-di-tosyla-
mide, which can be selectively mono-detosylated by the present
method (entry 13 in Table 2) to give N-alkyltosylamide B. Succes-
sive alkylation of the resulting B gives N,N-dialkyltosylamide,
which can also be detosylated by the present method (entry 6 in
Table 2) to produce N,N-dialkylamine in high yield.
Finally, selective detosylation of N,N-disubstituted tosylamide
in the presence of N-mono-substituted tosylamide was attempted,
and the results are shown in Scheme 3. Electrolysis of triamide 5 in
the presence of 0.5 equiv of naphthalene with 3.0 F/mol of electric-
ity30 resulted in selective detosylation of disubstituted tosylamide
to give a high yield of amino ditosylamide 6, which is a useful com-
ponent for the synthesis of polyaza macrocycles and was prepared
by four steps.31 By using the present method, 6 could be prepared
from commercially available 5 in one step. Moreover, it should be
noted that this selective detosylation cannot be achieved by re-
ported conventional methods.
In conclusion, Hg cathode-free electrochemical detosylation has
been accomplished under neutral and mild conditions. Efficient
detosylation of N,N-disubstituted tosylamides was successfully
carried out by a constant current electrolysis using an undivided
cell equipped with a Pt cathode and an Mg anode in the presence
of naphthalene as an electron-transfer mediator. The present
method also enabled selective detosylation of N,N-disubstituted
tosylamide in the presence of N-mono-substituted tosylamides.
Consequently, it should become a powerful tool for synthesis of
various nitrogen-containing organic compounds.
13. Sabitha, G.; Reddy, B. V. S.; Abraham, S.; Yadav, J. S. Tetrahedron Lett. 1999, 40,
1569.
14. Vellemäe, E.; Lebedev, O.; Mäeorg, U. Tetrahedron Lett. 2008, 49, 1373.
15. Nayak, S. K. Synthesis 2000, 1575.
16. Nyasse, B.; Grehn, L.; Ragnarsson, U. Chem. Commun. 1997, 1017.
17. Uchiyama, M.; Matsumoto, Y.; Nakamura, S.; Ohwada, T.; Kobayashi, N.;
Yamashita, N.; Matsumiya, A.; Sakammoto, T. J. Am. Chem. Soc. 2004, 126, 8755.
18. Millburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 892.
19. (a) Liu, Q.; Liu, Z.; Zhou, Y.-L.; Zhang, W.; Yang, L.; Liu, Z.-L.; Yu, W. Synlett 2005,
2510; (b) Abad, A.; Mellier, D.; Pète, J. P.; Portella, C. Tetrahedron Lett. 1971, 12,
4555; (c) Yuan, W.; Fearson, K.; Gelb, M. H. J. Org. Chem. 1989, 54, 906; (d)
Hamada, T.; Nishida, A.; Yonemitsu, O. J. Am. Chem. Soc. 1986, 108, 140; (e)
Urjasz, W.; Celewicz, L. J. Phys. Org. Chem. 1998, 11, 618; (f) Ayadim, M.; Jiwan,
J. L. H.; Soumillion, J. P. J. Am. Chem. Soc. 1999, 121, 10436; (g) Art, J. F.;
Kestemont, J. P.; Soumillion, J. P. Tetrahedron Lett. 1991, 32, 1425.
20. (a) Yasuhara, A.; Sakamoto, T. Tetrahedron Lett. 1998, 39, 595; (b) Yasuhara, A.;
Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
ˇ
21. Liu, Y.; Shen, L.; Prashad, M.; Tibbatts, J.; Repic, O.; Blacklock, T. J. Org. Process
1. Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th
Res. Dev. 2008, 12, 778.
ed.; John Wiely & Sons, Inc.: Hoboken, New Jersey, 2007. pp 855.