1,3,3-Trimethylbicyclo[2.2.1]heptan-2-yl 1-(4-methoxyphenyl)-
2-acetyl-3-phenyl-aziridine-2-carboxylate (8). Major isomer. IR
(KBr, cm-1): 1755 (s), 1716 (s), 1585 (m), 1512 (m), 1458 (m),
1396 (m), 1292 (s), 1176 (m), 1157 (m), 1030 (m), 956 (w), 694
(w); 1H NMR (CDCl3, 400 MHz) d 7.31-7.26 (m, 5H), 7.24
(d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 4.86 (s, 1H),
3.99 (s, 1H), 3.75 (s, 3H), 1.82 (s, 3H), 1.69-1.42 (m, 2H), 1.39-
1.26 (m, 3H), 1.08-0.96 (m, 2H), 0.96 (s, 3H), 0.92 (s, 3H), 0.55
(s, 3H); 13C NMR (CDCl3, 100 MHz) d 164.4, 156.6, 129.3,
127.6, 127.4, 119.1, 114.7, 87.9, 67.0, 55.9, 48.7, 41.7, 39.9, 29.8,
26.8, 26.2, 23.2, 20.7, 19.4, 19.2, 18.7; HRMS (EI+) calc. for
C28H33NO4 (M+): 447.2410, found: 447.2374; Anal. Calc. for
C28H33NO4: C, 75.14; H, 7.43; N, 3.13, found: C, 75.14; H, 7.45; N,
3.13.
Reaction of aziridine 3a with cerium(IV) ammonium nitrate
To a solution of 3a (168 mg, 0.5 mmol) in acetonitrile (7 mL) under
an ice-bath was added a solution of cerium(IV) ammonium nitrate
(685 mg, 1.25 mmol) in 4 mL of water. The reaction mixture was
stirred for 2 hours and 5% aqueous NaHCO3 solution was added
at 0 ◦C until pH of the solution was almost neutral. The resulting
mixture was allowed to warm up to room temperature. The solid
sodium sulfite was added portionwise until a brown slurry was
formed. After AcOEt (10 mL) was added, the organic layer was
separated and dried over anhydrous sodium sulfate. The solvent
was removed under vacuum and the residue was purified by flash
column chromatography on silica gel (hexane: ethyl acetate = 3:
1) to afford cis-methyl 2-acetyl-3-phenyl-aziridine-2-carboxylate
(5) as a white solid (68 mg, 62% yield). M. p. 128–130 ◦C; IR
1
Minor isomer. H NMR (CDCl3, 400 MHz) d 7.31-7.26 (m,
1
(KBr, cm-1): 1741 (s), 1600 (m), 1453 (m), 1250 (m); H NMR
5H), 7.21 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.86 (s,
1H), 3.94 (s, 1H), 3.74 (s, 3H), 1.82 (s, 3H), 1.69-1.42 (m, 2 H),
1.39-1.26 (m, 3H), 1.08-0.96 (m, 2H), 0.98 (s, 3H), 0.67 (s, 3H), 0.43
(s, 3H); 13C NMR (CDCl3, 100 MHz) d 164.4, 156.6, 129.3, 127.6,
127.4, 119.1, 114.7, 87.9, 67.0, 55.9, 48.7, 41.7, 39.9, 29.8, 26.8,
26.2, 23.2, 20.7, 19.4, 19.2, 18.7; HRMS (EI+) calc. for C28H33NO4
(M+): 447.2410; found: 447.2374.
(CDCl3, 400 MHz) d 7.32-7.26 (m, 5H), 4.63 (s, 1H), 3.24 (s, 3H),
1.76 (s, 3H); 13C NMR (CDCl3, 100 MHz) d 168.8, 167.8, 135.6,
128.5, 128.3, 126.1, 67.5, 63.0, 51.7, 17.2; HRMS (FAB) calc. for
C12H13O3N1 (M+): 219.0890, found: 219.0886.
Acknowledgements
We thank the National Natural Science Foundation of China
(No. 20472061, 20772160), NCET plan of Ministry of Education
of China, Guangzhou Bureau of Science and Technology for
financial support of this study. We also thank Prof. Michael P.
Doyle for his help and suggestions.
Tetrahydro-4,4-dimethyl-2-oxofuran-3-yl 1-(4-methoxyphenyl)-
2-acetyl-3-phenyl-aziridine-2-carboxylate (9). Major isomer. IR
(KBr, cm-1): 1763 (s), 1734 (s), 1609 (s), 1583 (m), 1510 (m), 1466
(m), 1373 (m), 1292 (m), 1246 (m), 1178 (w), 1161 (m), 823 (m),
594 (w); 1H NMR (CDCl3, 400 MHz) d 7.51 (d, J = 6.4 Hz, 2H),
7.28 (d, J = 9.2 Hz, 3H), 6.92 (d, J = 9.2 Hz, 2H), 6.79 (d, J =
9.2 Hz, 2H), 4.99 (s, 1H), 4.58 (s, 1H), 4.21 (d, J = 9.6 Hz, 1H),
4.04 (d, J = 9.6 Hz, 1H), 3.72 (s, 3H), 2.0 (s, 3H), 1.39 (s, 3H),
1.23 (d, J = 8.4 Hz, 3 H); 13C NMR (CDCl3, 100 MHz) d 196.9,
164.6, 155.04, 137.2, 133.9, 129.2, 118.8, 115.4, 114.6, 114.5, 83.7,
79.9, 65.5, 60.9, 55.9, 55.8, 40.0, 28.5, 21.7; HRMS (EI+) calc.
for C24H25NO6 (M+): 423.1682, found: 423.1641; Anal. Calc. for
C24H25NO6 : C, 68.07; H, 5.95; N, 3.31, found: C, 67.62; H, 6.01;
N, 3.27.
References
1 (a) T. Kametani and T. Honda, Advances in Heterocyclic Chemistry,
1986, 39, 181; (b) W. H. Pearson, B. W. Lian, and S. C. Bergmeier,
Comprehensive Heterocyclic Chemistry II, vol. 1A, ed. A. Padwa,
Pergamon Press, Oxford, 1996, pp. 1–60; (c) K. M. L. Rai, and A.
Hassner, Comprehensive Heterocyclic Chemistry II, vol. 1A; A. Padwa,
Ed.; Pergamon Press: Oxford, 1996, pp. 61–96.
2 (a) J. B. Sweeney, Aziridines and Epoxides in Organic Synthesis, 2006,
117; (b) D. Huang, M. Yan and Q. Shen, Chin. J. Org. Chem., 2004, 24,
1200; (c) J. Royer, M. Bonin and L. Micouin, Chem. Rev., 2004, 104,
2311.
1
Minor isomer. H NMR (CDCl3, 400 MHz) d 7.59 (d, J =
8.0 Hz, 2H), 7.34 (d, J = 11.4 Hz, 3H), 7.01 (d, J = 9.2 Hz,
2H), 6.79 (d, J = 9.2 Hz, 2H), 5.28 (s, 1H), 4.69 (s, 1H), 4.12 (d,
J = 8.4 Hz, 1H), 3.99 (d, J = 8.4 Hz, 1H), 3.74 (s, 3H), 2.05 (s,
3H,), 1.35 (s, 3H), 1.26 (d, J = 8.8 Hz, 3H); 13C NMR (CDCl3,
100 MHz) d 197.9, 164.6, 157.2, 138.2, 135.7, 129.5, 129.0, 128.9,
127.7, 126.0, 114.6, 90.7, 87.0, 86.9, 80.8, 69.5, 40.8, 27.1, 25.4,
20.8; HRMS (EI+) calc. for C24H25NO6 (M+): 423.1682, found:
423.1641.
3 (a) D. Tanner, Angew. Chem. Int. Ed. Engl., 1994, 33, 599; (b) G.
Cardillo, L. Gentilucci and A. Tolomelli, Aldrichimica Acta, 2003, 36,
39.
4 (a) K. G. Rasmussen and K. A. Jorgensen, J. Chem. Soc. Chem.
Commun., 1995, 1401; (b) Y. Li, P. W. H. Chan, N. Y. Zhu, C. M.
Che and H. L. Kwong, Organometallics, 2004, 23, 54; (c) D. Morales,
J. Perez, L. Riera, V. Riera, R. Corzo-Suarez, S. Garcia-Granda and
D. Miguel, Organometallics, 2002, 21, 1540; (d) J. M. Mohan, B. S.
Uphade, V. R. Choudhary, T. Ravindranathan and A. Sudalai, Chem.
Commun., 1997, 1429; (e) M. Moran, G. Bernardinelli and P. Muller,
Helv. Chim. Acta, 1995, 78, 2048.
(3S,3aR,4R,7S,7aS)-3-Acetyl-hexahydro-7-isopropyl-4-methyl-
benzofuran-2(3H)-one (10). IR (KBr, cm-1): 1755 (s), 1725 (s),
1458 (m), 1385 (m), 1362 (m), 1289 (m), 1238 (m), 1154 (w), 992
(w); 1H NMR (CDCl3, 400 MHz) d 3.72 (t, J = 7.2 Hz, 1H), 3.45
(d, J = 12.0 Hz, 1H), 2.42 (s, 3H), 2.37-2.27 (m, 1H), 1.96-1.92 (m,
1H), 1.78 (d, J = 9.6 Hz, 2H), 1.69 (t, J = 10.8 Hz, 1H), 1.47 (t,
J = 5.6 Hz, 1H), 1.21-1.12 (m, 2H), 0.95 (d, J = 6.8 Hz, 3H), 0.9
(d, J = 7.2 Hz, 3H), 0.83 (d, J = 7.2 Hz, 3H); 13C NMR (CDCl3,
100 MHz) d 202.6, 173.0, 84.9, 59.1, 52.5, 47.0, 35.8, 34.8, 31.3,
28.9, 25.3, 20.3, 20.2, 18.2; HRMS (EI+) calc. for C14H22O3 (M+):
238.1569, found: 238.1581; Anal. Calc. for C14H22O3: C, 70.56; H,
9.30, found: C, 70.64; H, 9.28.
5 (a) J. S. Yadav, B. V. S. Reddy, P. N. Reddy and M. S. Rao, Synthesis,
2003, 1387; (b) T. Akiyama, S. Ogi and K. Fuchibe, Tetrahedron Lett.,
2003, 44, 4011; (c) M. F. Mayer, Q. W. Wang and M. M. Hossain,
J. Organomet. Chem., 2001, 630, 78; (d) B. Crousse, S. Narizuka, D.
Bonnet-Delpon and J. P. Begue, Synlett, 2001, 679; (e) S. Sengupta and
S. Mondal, Tetrahedron Lett., 2000, 41, 6245; (f) J. C. Antilla and W. D.
Wulff, Angew. Chem. In. Ed., 2000, 39, 4518; (g) W. H. Xie, J. W. Fang,
J. Li and P. G. Wang, Tetrahedron, 1999, 55, 12929; (h) J. C. Antilla and
W. D. Wu l ff , J. Am. Chem. Soc., 1999, 121, 5099; (i) K. G. Rasmussen,
K. Juhl, R. G. Hazell and K. A. Jorgensen, J. Chem. Soc. Perkin Trans.
2, 1998, 1347; (j) K. G. Rasmussen, R. G. Hazell and K. A. Jorgensen,
Acta Chem. Scand., 1998, 52, 1056; (k) S. Nagayama and S. Kobayashi,
Chem. Lett., 1998, 685; (l) K. G. Rasmussen and K. A. Jorgensen,
J. Chem. Soc. Perkin Trans. 1, 1997, 1287; (m) K. G. Rasmussen, R.
G. Hazell and K. A. Jorgensen, Chem. Commun., 1997, 1103; (n) L.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 187–192 | 191
©