149
E. L. Watson et al.
Letter
Synlett
tions, although they have been successfully employed in in-
tramolecular Heck cyclisations.19 We therefore prepared
the model dibromide 18a, but were disappointed to find
that this did not undergo cyclisation under either our mi-
crowave-based [Pd(II) precatalyst] or conventional thermal
[Pd(0) precatalyst] conditions (Scheme 5).
dergo either enolate arylation to oxindoles or direct C–H
functionalization of the indole to give indolo-fused benzo-
diazepines. The former chemistry has facilitated the syn-
thesis of the fully protected hexahydropyrrolindole core of
psychotrimine.
Acknowledgment
R
X
O
We thank the EPSRC and AstraZeneca for a studentship to E.L.W.
conditions A or B
O
N
N
Me
Y
Me
R
Y
References and Notes
19a–d
18a–d
X
18a Br
18b Br
Y
R
(1) Takayama, H.; Mori, I.; Kitajima, M.; Aimi, N.; Lajis, N. H. Org.
Lett. 2004, 6, 2945.
Br N-indolyl
(2) (a) Anthoni, U.; Christophersen, C.; Nielsen, P. H. In Alkaloids:
Chemical and Biological Perspectives; Vol. 13; Pelletier, S. W.,
Ed.; Pergamon Press: Oxford, 1999, 163. (b) Steven, A.;
Overman, L. E. Angew. Chem. Int. Ed. 2007, 46, 5488. (c) Schmidt,
M. A.; Movassaghi, M. Synlett 2008, 313. (d) Ruiz-Sanchis, P.;
Savina, S. A.; Albericio, F.; Alvarez, M. Chem. Eur. J. 2011, 17,
1388.
(3) Foo, K.; Newhouse, T.; Mori, I.; Takayama, H.; Baran, P. S. Angew.
Chem. Int. Ed. 2011, 50, 2716.
(4) Schallenberger, M. A.; Newhouse, T.; Baran, P. S.; Romesberg, F.
E. J. Antibiot. 2010, 63, 685.
Br
Cl
H
H
H
Cl
Br
18c
18d
Me
Br
O
conditions A
51%
O
N
N
Br
Me
Me
Br
20
21
Scheme 5 Behaviour of 2,6-dihalogenated N-methyl anilides under
enolate arylation and Heck conditions. Reagents and conditions: A: 10%
Pd(OAc)2, 10% HPCy3·BF4, NaOt-Bu, toluene, 110 °C, microwave. B: 5%
Pd2(dba)3, 10% SIPr·HCl, NaOt-Bu, toluene, reflux.
(5) Matsuda, Y.; Kitajima, M.; Takayama, H. Org. Lett. 2008, 10, 125.
(6) Takahashi, N.; Ito, Y.; Matsuda, Y.; Kogure, N.; Kitajima, M.;
Takayama, H. Chem. Commun. 2010, 46, 2501.
(7) (a) Newhouse, T.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 10866.
(b) Newhouse, T.; Lewis, C. A.; Eastman, K. J.; Baran, P. S. J. Am.
Chem. Soc. 2010, 132, 7119.
(8) (a) Araki, T.; Ozawa, T.; Yokoe, H.; Kanematsu, M.; Yoshida, M.;
Shishido, K. Org. Lett. 2013, 15, 200. (b) Zhang, H.; Kang, H.;
Hong, L.; Dong, W.; Li, G.; Zheng, X.; Wang, R. Org. Lett. 2014, 16,
2394.
(9) (a) Marsden, S. P.; Watson, E. L.; Raw, S. A. Org. Lett. 2008, 10,
2905. (b) Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.;
Kundig, E. P. Chem. Commun. 2008, 4040. (c) Watson, E. L.; Raw,
S. A. Tetrahedron Lett. 2009, 50, 3318.
(10) Hillgren, J. M.; Marsden, S. P. J. Org. Chem. 2008, 73, 6459.
(11) (a) Marsden, S. P. Cross-Coupling and Heck-Type Reactions, In
Science of Synthesis; Vol. 2; Wolfe, J. P., Ed.; Thieme: Stuttgart,
2013, 565. (b) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082.
(c) Johansson, C. C. C.; Colacot, T. J. Angew. Chem. Int. Ed. 2010,
49, 676. (d) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36,
234.
(12) Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. A. J. Am.
Chem. Soc. 2002, 124, 9008.
(13) (a) Sames, D.; Brown, M. A.; Lane, B. S. J. Am. Chem. Soc. 2005,
127, 8050. (b) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem.
Soc. 2005, 127, 13148.
(14) For a related synthesis of medium-ring-fused indoles by direct
oxidative C–H coupling, see: Pintori, D. G.; Greaney, M. F. J. Am.
Chem. Soc. 2011, 133, 1209.
(15) Gentles, R. G.; Ding, M.; Bender, J. A.; Bergstrom, C. P.; Grant-
Young, K.; Hewawasam, P.; Hudyma, T.; Martin, S.; Nickel, A.;
Reguiero-Ren, A.; Tu, Y.; Yang, Z.; Yeung, K.-S.; Zheng, X.; Chao,
S.; Sun, J.-H.; Beno, B. R.; Camac, D. M.; Chang, C.-H.; Gao, M.;
Morin, P. E.; Sheriff, S.; Tredup, J.; Wan, J.; Witmer, M. R.; Xie,
D.; Hanumegowda, U.; Knipe, J.; Mosure, K.; Santone, K. S.;
The reactions gave largely recovered starting material,
suggesting the catalytic reaction had not initiated or had
stalled. The simpler anilide 18b was also examined, but
similarly returned starting material. Concerned that the rel-
atively large bromide substituent might be inducing unfa-
vourable conformations that were preventing reaction, we
examined the corresponding dichloride 18c, again with no
success. Finally, we ruled out electronic influences of the
additional halide by examining the almost isosteric 2-bro-
mo-6-methyl anilide 18d, again recovering starting materi-
als. The successful Heck cyclisation in our hands of cro-
tonamide 20 under the standard reaction conditions in an
unoptimised 51% yield confirmed that the dibrominated
aniline function is capable of entering palladium-catalysed
pathways. The contrast between the Heck and enolate
chemistry is stark; at this stage we tentatively propose that
the Heck pathway is facilitated by a favourable coordination
of the palladium(0) to the electron-deficient alkene prior to
C–Br insertion, a pathway which is not available in the eno-
late arylation manifold. Future work towards psychotri-
mine through intermediates 17a,b will therefore focus on
directed metallation strategies for functionalization of the
C7 position.
In summary, we have examined the behaviour of 2-(N-
indolyl)amides under various palladium-catalysed aryl-
ation conditions. Through judicious choice of catalysts and
reagents, the substrates can be directed to selectively un-
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 146–150